Skip to main content
Log in

GCH1 reduces LPS-induced alveolar macrophage polarization and inflammation by inhibition of ferroptosis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

GTP cyclohydrolase 1(GCH1) was reported to protect against ferroptosis. However, it is not clear whether GCH1 reduced lipopolysaccharide (LPS)-induced macrophage polarization and inflammation by inhibition of ferroptosis.

Methods

Bioinformatics analysis was used to screen differential expression genes (DEGs) and obtain the different pathways and biological features. Lasso cox regression analysis with ferroptosis related DEGs was established to screen the most relevant genes for disease risk. LPS induced Raw264.7 macrophage polarization model and GCH1-specific siRNA oligos transfection were performed to confirm the function of GCH1. Immunofluorescence staining, western blot and quantitative real-time PCR were performed to detect the expression of iNOS, CD206, GCH1, IL6, SLC2A6, F4/80, IL1β, TNFα, IL10, GPX4, ACSL4, AMPK and p-AMPK in macrophages. The levels of ROS, SOD, MDA and GSH were detected according to the instructions of the reagent kit, respectively.

Results

542 DEGs were screened from GSE40885 microarray. GO and KEGG pathway enrichment analysis showed that the upregulated DEGs induced by LPS in alveolar macrophage were closely associated with inflammatory and immune responses, the downregulated DEGs were related to lipid metabolism, insulin resistance and AMPK signal pathway. Lasso cox regression analysis screened GCH1, IL6, and SLC2A6. Our experimental results showed that the expression of GCH1 and IL6 in the LPS group was higher than that in the control group, but there was no difference in the expression of SLC2A6. Bioinformatics analysis with GSE112720 observed that ferroptosis was enriched in GCHfl/fl + LPS group compared with GCHfl/flTie2cre + LPS group and GCHfl/fl + control group. Silence of GCH1 increased the levels of IL6, TNF-α and IL-1β and decreased IL10 level. Silence of GCH1 increased iNOS level and decreased CD206 level. Moreover, silence of GCH1 raised ferroptosis induced by LPS in macrophages and suppressed the activity of AMPK pathway.

Conclusions

GCH1 inhibited ferroptosis in LPS-stimulated macrophages, reduced macrophage toward to M1 polarization and inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

GCH1:

GTP cyclohydrolase-1

LPS:

Lipopolysaccharide

GPX4:

Glutathione peroxidase 4

ACSL4:

Acyl-coenzyme A synthetase long-chain family member 4

SLC2A6:

6 Solute carrier family 2 (facilitated glucose transporter)

iNOS:

Inducible nitric oxide synthase

CD206:

Human mannose receptor 206

IL6:

Interleukin 6

IL1β:

Interleukin 1 beta

TNFα:

Tumor necrosis factor alpha

IL10:

Interleukin 10

AMPK:

AMP-activated protein kinase

DEG:

Differentially expressed gene

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

PCR:

Polymerase chain reaction

DCFH-DA:

2',7'-Dichlorodihydrofluorescein diacetate

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

GSH:

Glutathione

TUNEL:

TdT-mediated dUTP nick end-labeling

DAPI:

4',6-Diamidino-2-phenylindole

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

PVDF:

Polyvinylidene difluoride

MODS:

Multiple organ dysfunction syndrome

References

  1. Fiest KM, Krewulak KD, Brundin-Mather R, Leia MP, Fox-Robichaud A, Lamontagne F, et al. Patient, public, and healthcare professionals’ sepsis awareness, knowledge, and Information seeking behaviors: a scoping review. Crit Care Med. 2022;50(8):1187–97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang WH, Heithoff DM, Aziz PV, Haslund-Gourley B, Westman JS, Narisawa S, et al. Accelerated aging and clearance of host anti-inflammatory enzymes by discrete pathogens fuels sepsis. Cell Host Microbe. 2018;24(4):500-513e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paudel S, Baral P, Ghimire L, Bergeron S, Jin L, DeCorte JA, et al. CXCL1 regulates neutrophil homeostasis in pneumonia-derived sepsis caused by Streptococcus pneumoniae serotype 3. Blood. 2019;133(12):1335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang CY, Gao J, Wang Z. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater. 2018;30(43):e1803618.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rosen DA, Seki SM, Fernandez-Castaneda A, Beiter RM, Eccles JD, Woodfolk JA, et al. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med. 2019;11(478):eaau5266.

  6. Rayes J, Lax S, Wichaiyo S, Watson SK, Di Y, Lombard S, et al. The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat Commun. 2017;8(1):2239.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Savio LEB, de Andrade MP, Figliuolo VR, de Avelar Almeida TF, Santana PT, Oliveira SDS, et al. CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. J Hepatol. 2017;67(4):716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, et al. A druggable copper-signalling pathway that drives inflammation. Nature. 2023;617(7960):386–394.

    Google Scholar 

  9. Lorente-Sorolla C, Garcia-Gomez A, Català-Moll F, Toledano V, Ciudad L, Avendaño-Ortiz J, et al. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genome Med. 2019;11(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Song Z, Zhang X, Zhang L, Xu F, Tao X, Zhang H, et al. Progranulin plays a central role in host defense during sepsis by promoting macrophage recruitment. Am J Respir Crit Care Med. 2016;194(10):1219–32.

    Article  CAS  PubMed  Google Scholar 

  11. Tirado M, Koss W. Differentiation of mesothelial cells into macrophage phagocytic cells in a patient with clinical sepsis. Blood. 2018;132(13):1460.

    Article  CAS  PubMed  Google Scholar 

  12. Wang S, Liu G, Li Y, Pan Y. Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol. 2022;13:840029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang JJ, Zhang GF, Zheng JY, Sun JH, Ding SB. Targeting Mitochondrial ROS-Mediated ferroptosis by quercetin alleviates high-fat diet-induced hepatic lipotoxicity. Front Pharmacol. 2022;13:876550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.

    Article  CAS  PubMed  Google Scholar 

  16. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12(8):1425–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130–43.

    Article  CAS  PubMed  Google Scholar 

  20. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Muller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2020;6(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  21. Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020;16(12):1351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cronin SJF, Rao S, Tejada MA, Turnes BL, Licht-Mayer S, Omura T, et al. Phenotypic drug screen uncovers the metabolic GCH1/BH4 pathway as key regulator of EGFR/KRAS-mediated neuropathic pain and lung cancer. Sci Transl Med. 2022;14(660):eabj1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jing X, Huang YW, Jarzembowski J, Shi Y, Konduri GG, Teng RJ. Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1 function in neonatal rat pups. Pediatr Res. 2017;82(3):483–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teng RJ, Du J, Xu H, Bakhutashvili I, Eis A, Shi Y, et al. Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase. Am J Physiol Lung Cell Mol Physiol. 2011;301(3):L334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reynier F, de Vos AF, Hoogerwerf JJ, Bresser P, van der Zee JS, Paye M, et al. Gene expression profiles in alveolar macrophages induced by lipopolysaccharide in humans. Mol Med. 2012;18(1):1303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McNeill E, Crabtree MJ, Sahgal N, Patel J, Chuaiphichai S, Iqbal AJ, et al. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic Biol Med. 2015;79:206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu J, Qiu D, Yu A, Hu J, Deng H, Li H, et al. YTHDF1 Is a potential pan-cancer biomarker for prognosis and immunotherapy. Front Oncol. 2021;11:607224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta. 2022;1(3): e36.

    Article  Google Scholar 

  29. Zheng Y, Gao W, Zhang Q, Cheng X, Liu Y, Qi Z, et al. Ferroptosis and autophagy-related genes in the pathogenesis of ischemic cardiomyopathy. Front Cardiovasc Med. 2022;9:906753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 2004;202(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Zhu L, Li H, Ren W, Zhuo R, Feng C, et al. Alveolar macrophage-derived exosomal tRF-22–8BWS7K092 activates Hippo signaling pathway to induce ferroptosis in acute lung injury. Int Immunopharmacol. 2022;107:108690.

    Article  CAS  PubMed  Google Scholar 

  32. Young R, Bush SJ, Lefevre L, McCulloch MEB, Lisowski ZM, Muriuki C, et al. Species-specific transcriptional regulation of genes involved in nitric oxide production and arginine metabolism in macrophages. Immunohorizons. 2018;2(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  33. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.

    Article  CAS  PubMed  Google Scholar 

  34. Yang Y, Wang Y, Guo L, Gao W, Tang TL, Yan M. Interaction between macrophages and ferroptosis. Cell Death Dis. 2022;13(4):355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lyu T, Tian C, Tan T, Lyu J, Yan K, Zhao X, et al. AMP-activated protein kinase(AMPK) channel: a global bibliometric analysis from 2012 to 2021. Channels (Austin). 2022;16(1):60–71.

    Article  PubMed  Google Scholar 

  37. Ma Y, Elmhadi M, Wang C, Li Z, Zhang H, He B, et al. Thiamine Supplementation alleviates lipopolysaccharide-triggered adaptive inflammatory response and modulates energy state via suppression of NFκB/p38 MAPK/AMPK signaling in rumen epithelial cells of goats. Antioxidants (Basel). 2022;11(10):2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol. 2017;12:50–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107–25.

    Article  CAS  PubMed  Google Scholar 

  40. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  41. Uciechowski P, Dempke WC. Interleukin-6: a masterplayer in the cytokine network. Oncology. 2020;98(3):131–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 2019;6(1):41–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu L, Liu Y, Chen X, Zhong H, Wang Y. Ferroptosis in life: to be or not to be. Biomed Pharmacother. 2023;159:114241.

    Article  CAS  PubMed  Google Scholar 

  44. Lv Y, Wu M, Wang Z, Wang J. Ferroptosis: from regulation of lipid peroxidation to the treatment of diseases. Cell Biol Toxicol. 2022;39(3):827–851.

    Article  PubMed  Google Scholar 

  45. Gu Y, Li Y, Wang J, Zhang L, Zhang J, Wang Y. Targeting ferroptosis: paving new roads for drug design and discovery. Eur J Med Chem. 2023;247:115015.

    Article  CAS  PubMed  Google Scholar 

  46. Lai K, Song C, Gao M, Deng Y, Lu Z, Li N, et al. Uridine alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage. Int J Mol Sci. 2023;24(6):5093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He R, Liu B, Xiong R, Geng B, Meng H, Lin W, et al. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury. Cell Death Discov. 2022;8(1):43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu Q, Lyon CJ, Fletcher JK, Tang W, Wan M, Hu TY. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B. 2021;11(6):1493–512.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFC2005800), the National Natural Science Foundation of China (No. 82100308), the National Natural Science Foundation Excellent Youth Cultivation Project (No. 20202ZDB01017), the Natural Science Foundation of Jiangxi Province (No. 20202BABL216035, No. 20202BAB206042, No. 20212BCD42005 and G/Y2428).

Author information

Authors and Affiliations

Authors

Contributions

LLY and SSC designed the study. YHX performed the experiments. YY and YHY collected the data, and YY, YHY, BL and ZYD analyzed and interpreted the data. LLY, SSC and JL prepared the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shengsong Chen or Lingling Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study was supported by the Medical Research Ethics Committee of the Second Affiliated Hospital of Nanchang University.

Consent for publication

Not applicable.

Additional information

Responsible Editor: L Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Yuan, Y., Yang, Y. et al. GCH1 reduces LPS-induced alveolar macrophage polarization and inflammation by inhibition of ferroptosis. Inflamm. Res. 72, 1941–1955 (2023). https://doi.org/10.1007/s00011-023-01785-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01785-1

Keywords

Navigation