Skip to main content

Advertisement

Log in

ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Circulating enzymatic activity and RAAS regulation in severe cases of COVID-19 remains unclear, therefore we measured the serum activity of several proteases as potential targets to control the SARS-CoV-2 infection.

Material or subjects

152 patients with COVID-19-like symptoms were grouped according to the severity of symptoms (COVID-19 negative, mild, moderate and severe).

Methods

Serum samples of COVID-19 patients and controls were subjected to biochemical analysis and enzymatic assays of ACE2, ACE, DPPIV, PREP and CAT L. One-way ANOVA and multivariate logistic regression analysis were used. Statistical significance was accepted at p < 0.05.

Results

We detected a positive correlation among comorbidities, higher C-reactive protein (CRP) and D-dimer levels with disease severity. Enzymatic assays revealed an increase in serum ACE2 and CAT L activities in severe COVID-19 patients, while ACE, DPPIV and PREP activities were significantly reduced. Notably, analysis of ACE2/ACE activity ratio suggests a possible imbalance of ANG II/ANG(1-7) ratio, in a positive association with the disease severity.

Conclusion

Our findings reveal a correlation between proteases activity and the severity of COVID-19. These enzymes together contribute to the activation of pro-inflammatory pathways, trigger a systemic activation of inflammatory mediators, leading to a RAAS dysregulation and generating a significant damage in several organs, contributing to poor outcomes of severe cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Hui DS, Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. WHO - World Health Organization. Pneumonia of unknown cause—China (2020, accessed 18 Aug 2022); https://www.who.int/emergencies/disease-outbreak-news/item/2020-DON229.

  3. Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR, et al. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 2021;12:502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6:1–19.

    Google Scholar 

  5. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7:439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, et al. ACE2: the major cell entry receptor for SARS-CoV-2. Lung. 2020;198:867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamming I, Cooper M, Haagmans B, Hooper N, Korstanje R, Osterhaus A, et al. The emerging role of ACE2 in physiology and disease. J Pathol. 2007;212:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss H-P, et al. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26:1270–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010;128:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40:905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Horiuchi M, Akishita M, Dzau VJ. Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension. 1999;33:613–21.

    Article  CAS  PubMed  Google Scholar 

  12. Gaddam R, Chambers S, Bhatia M. ACE and ACE2 in inflammation: a tale of two enzymes. Inflamm Allergy-Drug Targets. 2014;13:224–34.

    Article  CAS  PubMed  Google Scholar 

  13. Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, et al. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 2005;280:30113–9.

    Article  CAS  PubMed  Google Scholar 

  14. Guo X-M, Cao J, Cai J-P, Wu J, Huang J, Asthana P, et al. Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2. Nat Commun. 2022;2022:13.

    Google Scholar 

  15. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2010;85:873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ramos SG, Rattis BAC, Ottaviani G, Celes MRN, Dias EP. ACE2 down-regulation may act as a transient molecular disease causing RAAS dysregulation and tissue damage in the microcirculatory environment among COVID-19 patients. Am J Pathol. 2021;191:1154–64.

    Article  CAS  PubMed  Google Scholar 

  17. Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol-Lung Cell Mol Physiol. 2018;314:L17-31.

    Article  PubMed  Google Scholar 

  18. Verano-Braga T, Martins AL, Motta-Santos D, Campagnole-Santos M, Santos RS. ACE2 in the renin–angiotensin system. Clin Sci. 2020;134:3063–78.

    Article  CAS  Google Scholar 

  19. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metzger R, Franke FE, Bohle RM, François A-G, Danilov SM. Heterogeneous distribution of angiotensin I-converting enzyme (CD143) in the human and rat vascular systems: Vessel, organ and species specificity. Microvasc Res. 2011;81:206–15.

    Article  CAS  PubMed  Google Scholar 

  21. Turner AJ, Hooper NM. The angiotensin-converting enzyme gene family: genomics and pharmacology. Trends Pharmacol Sci. 2002;23:177–83.

    Article  CAS  PubMed  Google Scholar 

  22. Tepasse P-R, Vollenberg R, Steinebrey N, König S. High angiotensin-converting enzyme and low carboxypeptidase N serum activity correlate with disease severity in COVID-19 Patients. J Personal Med. 2022;12:406.

    Article  Google Scholar 

  23. Trzaskalski NA, Fadzeyeva E, Mulvihill EE. Dipeptidyl peptidase-4 at the interface between inflammation and metabolism. Clin Med Insights: Endocrinol Diabetes. 2020. https://doi.org/10.1177/1179551420912972.

    Article  PubMed  Google Scholar 

  24. Penttinen A, Tenorio-Laranga J, Siikanen A, Morawski M, Roßner S, Arturo G-H. Prolyl oligopeptidase: a rising star on the stage of neuroinflammation research. CNS Neurol Disord Drug Targets. 2011;10:340–8.

    Article  CAS  PubMed  Google Scholar 

  25. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35:992–1019.

    Article  CAS  PubMed  Google Scholar 

  26. Kahne T, Lendeckel U, Wrenger S, Neubert K, Ansorge S, Reinhold D. Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int J Mol Med. 1999;4:3–15.

    CAS  PubMed  Google Scholar 

  27. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature. 2013;500:227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. García-Horsman JA, Männistö PT, Venäläinen JI. On the role of prolyl oligopeptidase in health and disease. Neuropeptides. 2007;41:1–24.

    Article  PubMed  Google Scholar 

  29. Bassendine MF, Bridge SH, McCaughan GW, Gorrell MD. COVID-19 and comorbidities: a role for dipeptidyl peptidase 4 (DPP4) in disease severity? J Diabetes. 2020;12:649–58.

    Article  CAS  PubMed  Google Scholar 

  30. Yang Y, Cai Z, Zhang J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: a meta-analysis. Ashraf GM, editor. PLoS ONE. 2021;16:e0251916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nádasdi Á, Sinkovits G, Bobek I, Lakatos B, Förhécz Z, Prohászka ZZ, et al. Decreased circulating dipeptidyl peptidase-4 enzyme activity is prognostic for severe outcomes in COVID-19 inpatients. Biomark Med. 2022;16:317–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci. 2005;102:11876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang I-C, Bosch BJ, Li F, Li W, Lee KH, Ghiran S, et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem. 2006;281:3198–203.

    Article  CAS  PubMed  Google Scholar 

  34. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta BBA Proteins Proteom. 2012;1824:68–88.

    Article  CAS  Google Scholar 

  35. Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochem Biophys Acta. 2014;1840:2560–70.

    Article  PubMed  Google Scholar 

  36. Vidak E, Javoršek U, Vizovišek M, Turk B. Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells. 2019;8:264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao M-M, Yang W-L, Yang F-Y, Zhang L, Huang W-J, Hou W, et al. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther. 2021;6:134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, Detection of, et al. novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2019;2020:25.

    Google Scholar 

  39. Pedersen KB, Sriramula S, Chhabra KH, Xia H, Lazartigues E. Species-specific inhibitor sensitivity of angiotensin-converting enzyme 2 (ACE2) and its implication for ACE2 activity assays. Am J Physiol-Regulat Integr Compar Physiol. 2011;301:R1293–9.

    Article  CAS  Google Scholar 

  40. Kim YB, Kopcho LM, Kirby MS, Hamann LG, Weigelt CA, Metzler WJ, et al. Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118). Arch Biochem Biophys. 2006;445:9–18.

    Article  CAS  PubMed  Google Scholar 

  41. Luo X, Zhou W, Yan X, Guo T, Wang B, Xia H, et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis. 2020;71:2174–9.

    Article  CAS  PubMed  Google Scholar 

  42. Valerio L, Ferrazzi P, Sacco C, Ruf W, Kucher N, Konstantinides SV, et al. Course of D-dimer and C-reactive protein levels in survivors and nonsurvivors with COVID-19 pneumonia: a retrospective analysis of 577 patients. Thromb Haemost. 2020;121:98–101.

    PubMed  PubMed Central  Google Scholar 

  43. Pagliaro P, Penna C. ACE/ACE2 ratio: a key also in 2019 coronavirus disease (Covid-19)? Front Med. 2020;7:335.

    Article  Google Scholar 

  44. Reindl-Schwaighofer R, Hödlmoser S, Domenig O, Krenn K, Eskandary F, Krenn S, et al. The systemic renin-angiotensin system in COVID-19. Sci Rep. 2022;12:20117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov. 2006;5:785–99.

    Article  CAS  PubMed  Google Scholar 

  47. Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, et al. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem Pharmacol. 2020. https://doi.org/10.1016/j.bcp.2020.114225.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alves MHME, Mahnke LC, Macedo TC, dos Silva TK, Carvalho-Junior, LB. The enzymes in COVID-19: a review. Biochimie. 2022;197:38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19:1–14.

    Article  Google Scholar 

  50. Huang Y, Yang C, Xu X, Xu W, Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41:1141–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4:1011–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bollavaram K, Leeman TH, Lee MW, Kulkarni A, Upshaw SG, Yang J, et al. Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V. Protein Sci. 2021;30:1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Úri K, Fagyas M, Kertész A, Borbély A, Jenei C, Bene O, et al. Circulating ACE2 activity correlates with cardiovascular disease development. J Renin-Angiotensin-Aldosterone Syst. 2016. https://doi.org/10.1177/1470320316668435.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fagyas M, Kertész A, Siket IM, Bánhegyi V, Kracskó B, Szegedi A, et al. Level of the SARS-CoV-2 receptor ACE2 activity is highly elevated in old-aged patients with aortic stenosis: implications for ACE2 as a biomarker for the severity of COVID-19. GeroScience. 2021;43:19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patel S, Juno J, Lee WS, Wragg K, Hogarth PM, Kent S, et al. Plasma ACE2 activity is persistently elevated following SARS-CoV-2 infection: implications for COVID-19 pathogenesis and consequences of COVID-19. J Hypertens. 2021;39: e394.

    Article  Google Scholar 

  57. Fagyas M, Fejes Z, Sütő R, Nagy Z, Székely B, Pócsi M, et al. Circulating ACE2 activity predicts mortality and disease severity in hospitalized COVID-19 patients. Int J Infect Dis. 2022;115:8–16.

    Article  CAS  PubMed  Google Scholar 

  58. Bastolla U, Chambers P, Abia D, Garcia-Bermejo M-L, Fresno M. Is Covid-19 severity associated with ACE2 degradation? Front Drug Discov. 2022. https://doi.org/10.3389/fddsv.2021.789710.

    Article  Google Scholar 

  59. Poudel A, Poudel Y, Adhikari A, Aryal BB, Dangol D, Bajracharya T, et al. D-dimer as a biomarker for assessment of COVID-19 prognosis: D-dimer levels on admission and its role in predicting disease outcome in hospitalized patients with COVID-19. Ai T, editor. PLoS ONE. 2021;16:e0256744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maza MC, Úbeda M, Delgado P, Horndler L, Llamas MA, van Santen HM, et al. ACE2 Serum levels as predictor of infectability and outcome in COVID-19. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.836516.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Montanari M, Canonico B, Nordi E, Vandini D, Barocci S, Benedetti S, et al. Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul. 2021. https://doi.org/10.1016/j.jbior.2021.100820.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang K, Chen W, Zhang Z, Deng Y, Lian J-Q, Du P, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5:283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barnes CO, Jette CA, Abernathy ME, Dam K-MA, Esswein SR, Gristick HB, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020;588:1–6.

    Article  Google Scholar 

  64. Duru CE, Duru IA, Adegboyega AE. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bull Natl Res Centre. 2021;45:57.

    Article  Google Scholar 

  65. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bosch BJ, Bartelink W, Rottier PJM. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol. 2008;82:8887–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mellott DM, Tseng C-T, Drelich A, Fajtová P, Chenna BC, Kostomiris DH, et al. A clinical-stage cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells. ACS Chem Biol. 2021;16:642–50.

    Article  PubMed  Google Scholar 

  68. Gomes CP, Fernandes DE, Casimiro F, da Mata GF, Passos MT, Varela P, et al. Cathepsin L in COVID-19: from pharmacological evidences to genetics. Front Cell Infect Microbiol. 2020. https://doi.org/10.3389/fcimb.2020.589505.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol. 2021. https://doi.org/10.1111/1348-0421.12945.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilczynski SA, Wenceslau CF, McCarthy CG, Webb RC. A cytokine/bradykinin storm comparison: what is the relationship between hypertension and COVID-19? Am J Hypertens. 2021;34:304–6.

    Article  CAS  PubMed  Google Scholar 

  71. Carvalho PR, Sirois P, Fernandes PD. The role of kallikrein-kinin and renin-angiotensin systems in COVID-19 infection. Peptides. 2021. https://doi.org/10.1016/j.peptides.2020.170428.

    Article  PubMed  Google Scholar 

  72. Khan KS, Reed-Embleton H, Lewis J, Bain P, Mahmud S. Angiotensin converting enzyme inhibitors do not increase the risk of poor outcomes in COVID-19 disease. A multi-centre observational study. Scottish Med J. 2020;65:149–53.

    Article  Google Scholar 

  73. Avanoglu Guler A, Tombul N, Aysert Yıldız P, Özger HS, Hızel K, Gulbahar O, et al. The assessment of serum ACE activity in COVID-19 and its association with clinical features and severity of the disease. Scand J Clin Lab Invest. 2021;81:160–5.

    Article  CAS  PubMed  Google Scholar 

  74. Henry BM, Benoit JL, Rose J, de Oliveira MHS, Lippi G, Benoit SW. Serum ACE activity and plasma ACE concentration in patients with SARS-CoV-2 infection. Scand J Clin Lab Invest. 2021;81:272–5.

    Article  CAS  PubMed  Google Scholar 

  75. Karakaş Çelik S, Çakmak Genç G, Pişkin N, Açikgöz B, Altinsoy B, Kurucu İşsiz B, et al. Polymorphisms of ACE (I/D) and ACE2 receptor gene (Rs2106809, Rs2285666) are not related to the clinical course of COVID-19: a case study. J Med Virol. 2021;93:5947–52.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Baştuğ S, Çavdarlı B, Baştuğ A, Şencan İ, Tunçez E, Çakır EY, et al. Are angiotensin converting enzyme (ACE1/ACE2) gene variants associated with the clinical severity of COVID-19 pneumonia? A single-center cohort study. Anatolian J Cardiol. 2022;26:133–40.

    Article  Google Scholar 

  77. Sabater Molina M, Nicolás Rocamora E, Bendicho AI, Vázquez EG, Zorio E, Rodriguez FD, et al. Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease. Ciccacci C, editor. PLoS ONE. 2022;17:e0263140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Papadopoulou A, Fragkou PC, Maratou E, Dimopoulou D, Kominakis A, Kokkinopoulou I, et al. Angiotensin-converting-enzyme insertion/deletion polymorphism, ACE activity, and COVID-19: A rather controversial hypothesis. A case-control study. J Med Virol. 2022;94:1050–9.

    Article  CAS  PubMed  Google Scholar 

  79. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Investig. 1990;86:1343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Danser AHJ, Batenburg WW, van den Meiracker AH, Danilov SM. ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition? Pharmacol Therapeut. 2007;113:607–18.

    Article  CAS  Google Scholar 

  81. Castellon R, Hamdi H. Demystifying the ACE polymorphism: from genetics to biology. Curr Pharmaceut Design. 2007;13:1191–8.

    Article  CAS  Google Scholar 

  82. Shukla AK, Banerjee M. Angiotensin-converting-enzyme 2 and renin-angiotensin system inhibitors in COVID-19: an update. High Blood Pressure Cardiovasc Prevent. 2021;28:129–39.

    Article  CAS  Google Scholar 

  83. South AM, Diz D, Chappell MC. COVID-19, ACE2 and the cardiovascular consequences. Am J Physiol Heart Circul Physiol. 2020;318:H1084–90.

    Article  CAS  Google Scholar 

  84. Serfozo P, Wysocki J, Gulua G, Schulze A, Ye M, Liu P, et al. Ang II (angiotensin II) conversion to angiotensin-(1–7) in the circulation Is POP (prolyloligopeptidase)-dependent and ACE2 (angiotensin-converting enzyme 2)-independent. Hypertension. 2020;75:173–82.

    Article  CAS  PubMed  Google Scholar 

  85. Silva-Aguiar RP, Peruchetti DB, Rocco PRM, Schmaier AH, Silva PMR, Martins MA, et al. Role of the renin-angiotensin system in the development of severe COVID-19 in hypertensive patients. Am J Physiol-Lung Cell Mol Physiol. 2020;319:L596-602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2007;21:20–7.

    Article  CAS  PubMed  Google Scholar 

  87. Sachse A, Wolf G. Angiotensin II–induced reactive oxygen species and the kidney. J Am Soc Nephrol. 2007;18:2439–46.

    Article  CAS  PubMed  Google Scholar 

  88. Okamoto H, Ichikawa N. The pivotal role of the angiotensin-II–NF-κB axis in the development of COVID-19 pathophysiology. Hypertens Res. 2021;44:126–8.

    Article  CAS  PubMed  Google Scholar 

  89. Han C, Liu J, Liu X, Li M. Angiotensin II induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells. Atherosclerosis. 2010;212:206–12.

    Article  CAS  PubMed  Google Scholar 

  90. Waumans Y, Baerts L, Kehoe K, Lambeir A-M, De Meester I. The dipeptidyl peptidase family, prolyl oligopeptidase, and prolyl carboxypeptidase in the immune system and inflammatory disease. Atherosc Front Immunol. 2015;6:387.

    PubMed  Google Scholar 

  91. Bracke A, De-Hert E, De-bruyn M, Claesen K, Vliegen G, Vujkovic A, et al. Proline-specific peptidase activities (DPP4, PRCP, FAP and PREP) in plasma of hospitalized COVID-19 patients. Clin Chim Acta. 2022;531:4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schlicht K, Rohmann N, Geisler C, Hollstein T, Knappe C, Hartmann K, et al. Circulating levels of soluble dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int J Obes. 2020;44:2335–8.

    Article  Google Scholar 

  93. Scheen AJ. DPP-4 inhibition and COVID-19: from initial concerns to recent expectations. Diabetes Metab. 2020. https://doi.org/10.1016/j.diabet.2020.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rhee SY, Lee J, Nam H, Kyoung D-S, Shin DW, Kim DJ. Effects of a DPP-4 inhibitor and RAS blockade on clinical outcomes of patients with diabetes and COVID-19. Diabetes Metab J. 2021;45:251–9.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Rakhmat II, Kusmala YY, Handayani DR, Juliastuti H, Nawangsih EN, Wibowo A, et al. Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19)—A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2021;15:777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zein AFMZ, Raffaello WM. Dipeptidyl peptidase-4 (DPP-IV) inhibitor was associated with mortality reduction in COVID-19—a systematic review and meta-analysis. Prim Care Diabetes. 2021;16:162–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo—2014/27198-8, 2019/05266-5, 2019/01487-7) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—423165/2021-6).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JBP; methodology: RLN, JB, MR, GFM, DEF, JBP; formal analysis and investigation: RLN, JB, JGA, CAB, CPG, MYI; writing—original draft preparation: RLN, JB, MYI, GMK, JBP; writing—review and editing: RLN, JB, MYI, JBP; funding acquisition: MYI, GMK, JBP; resources: MYI, GMK; supervision: JBP.

Corresponding authors

Correspondence to Marcelo Yudi Icimoto, Gianna Mastroianni Kirsztajn or João Bosco Pesquero.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethics approval

All procedures were conducted in accordance of the principles of Helsinki Declaration. Approval was granted by the Ethics Committee of the Federal University of São Paulo (CAAE 31929120.0.0000.5505). The patients provided their written informed consent to participate in this study and for the publication of any potentially data included in this article.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Responsible Editor: Anatolii Kubyshkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, R.L., Branquinho, J., Arata, J.G. et al. ACE2, ACE, DPPIV, PREP and CAT L enzymatic activities in COVID-19: imbalance of ACE2/ACE ratio and potential RAAS dysregulation in severe cases. Inflamm. Res. 72, 1719–1731 (2023). https://doi.org/10.1007/s00011-023-01775-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01775-3

Keywords

Navigation