Skip to main content
Log in

STING-IFN-I pathway relieves incision induced acute postoperative pain via inhibiting the neuroinflammation in dorsal root ganglion of rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

The purpose of this study was to study the effect of STING-IFN-I pathway on incision induced postoperative pain in rats and its possible mechanisms.

Methods

The pain thresholds were evaluated by measuring the mechanical withdrawal threshold and the thermal withdrawal latency. The satellite glial cell and macrophage of DRG were analyzed. The expression of STING, IFN-a, P-P65, iNOS, TNF-α, IL-1β and IL-6 in DRG was evaluated.

Results

The activation of STING-IFN-I pathway can reduce the mechanical hyperalgesia, thermal hyperalgesia, down-regulate the expression of P-P65, iNOS, TNF-α, IL-1β and IL-6, and inhibit the activation of satellite glial cell and macrophage in DRG.

Conclusions

The activation of STING-IFN-I pathway can alleviate incision induced acute postoperative pain by inhibiting the activation of satellite glial cell and macrophage, which reducing the corresponding neuroinflammation in DRG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and the supplementary materials.

Abbreviations

WHO:

World Health Organization

DRG:

Dorsal root ganglion

IFN-I:

Type I interferon

EAE:

Experimental autoimmune encephalomyelitis

WB:

Western blotting

PTX:

Paclitaxel

CIPN:

Chemotherapy-induced peripheral neuropathy

CFA:

Complete Freund’s adjuvant

CCI:

Chronic constriction injury

PTPRD:

Protein tyrosine phosphatase receptor type D

RST:

Restraint stress

SNI:

Sciatic nerve injury

References

  1. Weiser TG, Haynes AB, Molina G, Lipsitz SR, Esquivel MM, Uribe-Leitz T, et al. Size and distribution of the global volume of surgery in 2012. Bull World Health Organ. 2016;94:201–209f.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glare P, Aubrey KR, Myles PS. Transition from acute to chronic pain after surgery. Lancet (London, England). 2019;393:1537–46.

    Article  PubMed  Google Scholar 

  3. Niraj G, Rowbotham DJ. Persistent postoperative pain: where are we now? Br J Anaesth. 2011;107:25–9.

    Article  CAS  PubMed  Google Scholar 

  4. Vaurio LE, Sands LP, Wang Y, Mullen EA, Leung JM. Postoperative delirium: the importance of pain and pain management. Anesth Analg. 2006;102:1267–73.

    Article  PubMed  Google Scholar 

  5. Richebé P, Capdevila X, Rivat C. Persistent postsurgical pain: pathophysiology and preventative pharmacologic considerations. Anesthesiology. 2018;129:590–607.

    Article  PubMed  Google Scholar 

  6. Fiore JF Jr, Olleik G, El-Kefraoui C, Verdolin B, Kouyoumdjian A, Alldrit A, et al. Preventing opioid prescription after major surgery: a scoping review of opioid-free analgesia. Br J Anaesth. 2019;123:627–36.

    Article  CAS  PubMed  Google Scholar 

  7. Wick EC, Grant MC, Wu CL. Postoperative multimodal analgesia pain management with nonopioid analgesics and techniques: a review. JAMA Surg. 2017;152:691–7.

    Article  PubMed  Google Scholar 

  8. Li Q, Zhu ZY, Lu J, Chao YC, Zhou XX, Huang Y, et al. Sleep deprivation of rats increases postsurgical expression and activity of L-type calcium channel in the dorsal root ganglion and slows recovery from postsurgical pain. Acta Neuropathol Commun. 2019;7:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pogatzki EM, Gebhart GF, Brennan TJ. Characterization of Adelta- and C-fibers innervating the plantar rat hindpaw one day after an incision. J Neurophysiol. 2002;87:721–31.

    Article  PubMed  Google Scholar 

  10. Banik RK, Subieta AR, Wu C, Brennan TJ. Increased nerve growth factor after rat plantar incision contributes to guarding behavior and heat hyperalgesia. Pain. 2005;117:68–76.

    Article  CAS  PubMed  Google Scholar 

  11. Inyang KE, Burton MD, Szabo-Pardi T, Wentworth E, McDougal TA, Ramirez ED, et al. Indirect AMP-activated protein kinase activators prevent incision-induced hyperalgesia and block hyperalgesic priming, whereas positive allosteric modulators block only priming in mice. J Pharmacol Exp Ther. 2019;371:138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Amaya F, Izumi Y, Matsuda M, Sasaki M. Tissue injury and related mediators of pain exacerbation. Curr Neuropharmacol. 2013;11:592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang X, Bai XC, Chen ZJ. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity. 2020;53:43–53.

    Article  CAS  PubMed  Google Scholar 

  14. Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity. 2022;55:1370-1385.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Donnelly CR, Jiang C, Andriessen AS, Wang K, Wang Z, Ding H, et al. STING controls nociception via type I interferon signalling in sensory neurons. Nature. 2021;591:275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang K, Donnelly CR, Jiang C, Liao Y, Luo X, Tao X, et al. STING suppresses bone cancer pain via immune and neuronal modulation. Nat Commun. 2021;12:4558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mathur V, Burai R, Vest RT, Bonanno LN, Lehallier B, Zardeneta ME, et al. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron. 2017;96:1290-1302.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan N, Zhang Y, Tan S, Sun J, Ye M, Gao H, et al. Therapeutic targeting of STING-TBK1-IRF3 signalling ameliorates chronic stress induced depression-like behaviours by modulating neuroinflammation and microglia phagocytosis. Neurobiol Dis. 2022;169: 105739.

    Article  CAS  PubMed  Google Scholar 

  19. Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain. 1996;64:493–502.

    Article  PubMed  Google Scholar 

  20. Zhou YQ, Chen SP, Liu DQ, Manyande A, Zhang W, Yang SB, et al. The role of spinal GABAB receptors in cancer-induced bone pain in rats. J Pain. 2017;18:933–46.

    Article  PubMed  Google Scholar 

  21. Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Rittner H, et al. Reactive oxygen species scavengers ameliorate mechanical allodynia in a rat model of cancer-induced bone pain. Redox Biol. 2018;14:391–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ma L, Li J, Zhou J, Zhang D, Xiao Z, Yu T, et al. Intravenous lidocaine alleviates postherpetic neuralgia in rats via regulation of neuroinflammation of microglia and astrocytes. iScience. 2021;24:102108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nicholas M, Vlaeyen JWS, Rief W, Barke A, Aziz Q, Benoliel R, et al. The IASP classification of chronic pain for ICD-11: chronic primary pain. Pain. 2019;160:28–37.

    Article  PubMed  Google Scholar 

  24. Pogatzki EM, Niemeier JS, Sorkin LS, Brennan TJ. Spinal glutamate receptor antagonists differentiate primary and secondary mechanical hyperalgesia caused by incision. Pain. 2003;105:97–107.

    Article  CAS  PubMed  Google Scholar 

  25. Bishop T, Marchand F, Young AR, Lewin GR, McMahon SB. Ultraviolet-B-induced mechanical hyperalgesia: a role for peripheral sensitisation. Pain. 2010;150:141–52.

    Article  CAS  PubMed  Google Scholar 

  26. Sun C, Wu G, Zhang Z, Cao R, Cui S. Protein tyrosine phosphatase receptor type D regulates neuropathic pain after nerve injury via the STING-IFN-I pathway. Front Mol Neurosci. 2022;15: 859166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan PH, Gao YJ, Berta T, Xu ZZ, Ji RR. Short small-interfering RNAs produce interferon-α-mediated analgesia. Br J Anaesth. 2012;108:662–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang CL, Son LX, Lu CL, You ZD, Wang YX, Sun LY, et al. Analgesic effect of interferon-alpha via mu opioid receptor in the rat. Neurochem Int. 2000;36:193–6.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Xu Y, Pan C, Ren Z, Yang X. TRIF is essential for the anti-inflammatory effects of Astragalus polysaccharides on LPS-infected Caco2 cells. Int J Biol Macromol. 2020;159:832–8.

    Article  CAS  PubMed  Google Scholar 

  30. Wang YX, Jiang CL, Lu CL, Song LX, You ZD, Shao XY, et al. Distinct domains of IFNalpha mediate immune and analgesic effects respectively. J Neuroimmunol. 2000;108:64–7.

    Article  CAS  PubMed  Google Scholar 

  31. Barragán-Iglesias P, Franco-Enzástiga Ú, Jeevakumar V, Shiers S, Wangzhou A, Granados-Soto V, et al. Type I interferons act directly on nociceptors to produce pain sensitization: implications for viral infection-induced pain. J Neurosci. 2020;40:3517–32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fitzgibbon M, Kerr DM, Henry RJ, Finn DP, Roche M. Endocannabinoid modulation of inflammatory hyperalgesia in the IFN-α mouse model of depression. Brain Behav Immun. 2019;82:372–81.

    Article  CAS  PubMed  Google Scholar 

  33. Goto T, Sapio MR, Maric D, Robinson JM, Domenichiello AF, Saligan LN, et al. Longitudinal peripheral tissue RNA-Seq transcriptomic profiling, hyperalgesia, and wound healing in the rat plantar surgical incision model. FASEB J. 2021;35: e21852.

    Article  CAS  PubMed  Google Scholar 

  34. Sukeishi A, Isami K, Hiyama H, Imai S, Nagayasu K, Shirakawa H, et al. Colchicine alleviates acute postoperative pain but delays wound repair in mice: roles of neutrophils and macrophages. Mol Pain. 2017;13:1744806917743680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamakita S, Matsuda M, Yamaguchi Y, Sawa T, Amaya F. Dexmedetomidine prolongs levobupivacaine analgesia via inhibition of inflammation and p38 MAPK phosphorylation in rat dorsal root ganglion. Neuroscience. 2017;361:58–68.

    Article  CAS  PubMed  Google Scholar 

  36. Chang L, Ye F, Luo Q, Tao Y, Shu H. Increased hyperalgesia and proinflammatory cytokines in the spinal cord and dorsal root ganglion after surgery and/or fentanyl administration in rats. Anesth Analg. 2018;126:289–97.

    Article  CAS  PubMed  Google Scholar 

  37. Raithel SJ, Sapio MR, LaPaglia DM, Iadarola MJ, Mannes AJ. Transcriptional changes in dorsal spinal cord persist after surgical incision despite preemptive analgesia with peripheral resiniferatoxin. Anesthesiology. 2018;128:620–35.

    Article  CAS  PubMed  Google Scholar 

  38. Tran PV, Johns ME, McAdams B, Abrahante JE, Simone DA, Banik RK. Global transcriptome analysis of rat dorsal root ganglia to identify molecular pathways involved in incisional pain. Mol Pain. 2020;16:1744806920956480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan PH, Ji J, Yeh CC, Ji RR. Interferons in pain and infections: emerging roles in neuro-immune and neuro-glial interactions. Front Immunol. 2021;12: 783725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Casella G, Rasouli J, Mason K, Boehm A, Kumar G, Hwang D, et al. A serine protease inhibitor suppresses autoimmune neuroinflammation by activating the STING/IFN-β axis in macrophages. Cell Mol Immunol. 2020;17:1278–80.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu S, Karaganis S, Mo RF, Li XX, Wen RX, Song XJ. IFNβ treatment inhibits nerve injury-induced mechanical allodynia and MAPK signaling by activating ISG15 in mouse spinal cord. J Pain. 2020;21:836–47.

    Article  PubMed  Google Scholar 

  42. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1: a001651.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu GJ, Lin YW, Chuang CY, Tsai HC, Chen RM. Liver nitrosation and inflammation in septic rats were suppressed by propofol via downregulating TLR4/NF-κB-mediated iNOS and IL-6 gene expressions. Life Sci. 2018;195:25–32.

    Article  CAS  PubMed  Google Scholar 

  46. Deng D, Xu F, Ma L, Zhang T, Wang Y, Huang S, et al. Electroacupuncture alleviates CFA-induced inflammatory pain via PD-L1/PD-1-SHP-1 pathway. Mol Neurobiol. 2023;60:2922.

    Article  CAS  PubMed  Google Scholar 

  47. Xu Z, Xie W, Feng Y, Wang Y, Li X, Liu J, et al. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain. J Neuroinflamm. 2022;19:164.

    Article  CAS  Google Scholar 

  48. Velichkova AN, Coleman SE, Torsney C. Postoperative pain facilitates rat C-fibre activity-dependent slowing and induces thermal hypersensitivity in a sex-dependent manner. Br J Anaesth. 2022;128:718–33.

    Article  PubMed  Google Scholar 

  49. Song Z, Xie W, Strong JA, Berta T, Ulrich-Lai YM, Guo Q, et al. High-fat diet exacerbates postoperative pain and inflammation in a sex-dependent manner. Pain. 2018;159:1731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santos DFS, Donahue RR, Laird DE, Oliveira MCG, Taylor BK. The PPARγ agonist pioglitazone produces a female-predominant inhibition of hyperalgesia associated with surgical incision, peripheral nerve injury, and painful diabetic neuropathy. Neuropharmacology. 2022;205: 108907.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant 2018YFC2001802 to X. Chen); National Natural Science Foundation (Grant 82071251 to X. Chen); Hubei Province Key Research and Development Program (Grant 2021BCA145 to X. Chen).

Author information

Authors and Affiliations

Authors

Contributions

This work was primarily conceived by XC and LM, data was collected by LM and DD, and analyzed by LM, DD, TZ and WZ. Manuscript was written by LM, DD, TZ, WZ, CL, SH, FX, YW, SZ, YD, YH, KW, XY, YZ, SC and XC. Figures were produced by LM. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiangdong Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Thiago Cunha.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 668 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Deng, D., Zhang, T. et al. STING-IFN-I pathway relieves incision induced acute postoperative pain via inhibiting the neuroinflammation in dorsal root ganglion of rats. Inflamm. Res. 72, 1551–1565 (2023). https://doi.org/10.1007/s00011-023-01764-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01764-6

Keywords

Navigation