Skip to main content

Advertisement

Log in

Electroacupuncture Alleviates CFA-Induced Inflammatory Pain via PD-L1/PD-1-SHP-1 Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Inflammatory pain is difficult to treat clinically, but electroacupuncture (EA) has been demonstrated to be effective in alleviating inflammatory pain. Programmed cell death ligand-1 (PD-L1) and its downstream signal, Src homology region two domain-containing phosphatase-1 (SHP-1) have a critical role in relieving inflammatory pain. However, whether the PD-L1/PD-1-SHP-1 pathway mediates the analgesic and anti-inflammatory effects of EA in inflammatory pain remains unclear. Here, we observed that EA reversed the complete Freund’s adjuvant (CFA)-induced hyperalgesia. EA reduced the expression of IL-6, iNOS, and NF-κB pathway in dorsal root ganglia (DRG) on day 7 after CFA injection but had no effect on the expression of IL-6, iNOS, and NF-κB PP65 on day 21 after CFA injection. Moreover, EA upregulated the protein levels of the PD-L1/PD-1-SHP-1 pathway on day 7 and day 21 after CFA injection. Furthermore, EA upregulated PD-L1 expression in calcitonin gene-related peptide (CGRP)+ but not in isohaemagglutinin B4 (IB4)+ and NF200+ neurons on day 7 and day 21 after CFA injection. Intrathecal injection of the PD-L1/PD-1 inhibitor BMS-1 (50 or 100 µg) blocked the EA-induced analgesic effect, significantly increased IL-6 and iNOS levels, and reduced the levels of PD-L1/PD-1-SHP-1. BMS-1 (50 or 100 µg) significantly reduced the expression of PD-L1 in IB4+, CGRP+, and NF200+ neurons. Our results show that EA’s anti-inflammatory and analgesic effects are associated with activating the PD-L1/PD-1-SHP-1 pathway and suppressing its regulated neuroinflammation. This study provides a new potential therapeutic target for treating inflammatory pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All the data supporting the findings of this study are available within the article and from the corresponding author upon reasonable request.

Abbreviations

EA:

Electroacupuncture

PD-L1:

Programmed death ligand-1

PD-1:

Programmed cell death receptor

SHP-1:

Src homology region two domain-containing phosphatase-1

DRG:

Dorsal root ganglia

Sting:

Stimulator of interferon

NGF:

Nerve growth factor

IL-2:

Interleukin-2

IFN-γ:

Interferon-γ

PWT:

Paw withdraw threshold

PWL:

Paw withdraw latency

CGRP:

Calcitonin gene-related peptide

IB4:

IsohemagglutininB4

NF-κB:

Nuclear transcription factor kappa B

TNF-α:

Tumour necrosis factor-α

PBS:

Phosphate buffer saline

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

5-HT (serotonin):

5-Hydroxytryptamine

iNOS:

Inducible nitric oxide synthase

NSAIDs:

Nonsteroidal anti-inflammatory drugs

References:

  1. Woolf CJ (2010) What is this thing called pain? J Clin Invest 120:3742–3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hucho T, Levine JD (2007) Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55:365–376

    Article  CAS  PubMed  Google Scholar 

  4. Pinho-Ribeiro FA, Verri WJ, Chiu IM (2017) Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 38:5–19

    Article  CAS  PubMed  Google Scholar 

  5. Held M, Karl F, Vlckova E, Rajdova A, Escolano-Lozano F, Stetter C, Bharti R, Forstner KU, Leinders M, Dusek L, Birklein F, Bednarik J, Sommer C, Uceyler N (2019) Sensory profiles and immune-related expression patterns of patients with and without neuropathic pain after peripheral nerve lesion. Pain 160:2316–2327

    Article  PubMed  Google Scholar 

  6. Chen G, Kim YH, Li H, Luo H, Liu DL, Zhang ZJ, Lay M, Chang W, Zhang YQ, Ji RR (2017) PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nat Neurosci 20:917–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    Article  CAS  PubMed  Google Scholar 

  8. Yue JX, Wang RR, Yu J, Tang YY, Hou WW, Lou GD, Zhang SH, Chen Z (2014) Histamine upregulates Nav1.8 expression in primary afferent neurons via H2 receptors: involvement in neuropathic pain. CNS Neurosci Ther 20:883–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  10. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  11. Hebeisen M, Baitsch L, Presotto D, Baumgaertner P, Romero P, Michielin O, Speiser DE, Rufer N (2013) SHP-1 phosphatase activity counteracts increased T cell receptor affinity. J Clin Invest 123:1044–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uceyler N, Gobel K, Meuth SG, Ortler S, Stoll G, Sommer C, Wiendl H, Kleinschnitz C (2010) Deficiency of the negative immune regulator B7–H1 enhances inflammation and neuropathic pain after chronic constriction injury of mouse sciatic nerve. Exp Neurol 222:153–160

    Article  PubMed  Google Scholar 

  13. Wang K, Gu Y, Liao Y, Bang S, Donnelly CR, Chen O, Tao X, Mirando AJ, Hilton MJ, Ji RR (2020) PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J Clin Invest 130:3603–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi S, Han Y, Wang D, Guo P, Wang J, Ren T, Wang W (2020) PD-L1 and PD-1 expressed in trigeminal ganglia may inhibit pain in an acute migraine model. Cephalalgia 40:288–298

    Article  PubMed  Google Scholar 

  15. Liu BL, Cao QL, Zhao X, Liu HZ, Zhang YQ (2020) Inhibition of trpv1 by shp-1 in nociceptive primary sensory neurons is critical in pd-l1 analgesia. JCI Insight 5(20)

  16. Xiao X, Zhao XT, Xu LC, Yue LP, Liu FY, Cai J, Liao FF, Kong JG, Xing GG, Yi M, Wan Y (2015) Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats. Pain 156:597–608

    Article  CAS  PubMed  Google Scholar 

  17. Fang JQ, Du JY, Liang Y, Fang JF (2013) Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Mol Pain 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gu Y, Chen S, Mo Y, Tu Y, Chen N, Zhao X, Li S, Yu Q, Dai Q, Wang J (2020) Electroacupuncture attenuates CFA-induced inflammatory pain by regulating CaMKII. Neural Plast 2020:8861994

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiang X, Wang S, Shao F, Fang J, Xu Y, Wang W et al (2019) Electroacupuncture stimulation alleviates CFA-induced inflammatory pain via suppressing P2X3 expression. Int J Mol Sci 20(13)

  20. Chen L, Xu A, Yin N, Zhao M, Wang Z, Chen T, Gao Y, Chen Z (2017) Enhancement of immune cytokines and splenic CD4+ T cells by electroacupuncture at ST36 acupoint of SD rats. PLoS ONE 12:e175568

    Google Scholar 

  21. Su TF, Zhao YQ, Zhang LH, Peng M, Wu CH, Pei L, Tian B, Zhang J, Shi J, Pan HL, Li M (2012) Electroacupuncture reduces the expression of proinflammatory cytokines in inflamed skin tissues through activation of cannabinoid CB2 receptors. Eur J Pain 16:624–635

    Article  CAS  PubMed  Google Scholar 

  22. Yu ML, Wei RD, Zhang T, Wang JM, Cheng Y, Qin FF, Fu SP, Lu ZG, Lu SF (2020) Electroacupuncture relieves pain and attenuates inflammation progression through inducing IL-10 production in CFA-induced mice. Inflammation 43:1233–1245

    Article  CAS  PubMed  Google Scholar 

  23. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110

    Article  PubMed  Google Scholar 

  24. Ghasemlou N, Chiu IM, Julien JP, Woolf CJ (2015) CD11b+Ly6G- myeloid cells mediate mechanical inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A 112:E6808–E6817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li QH, Xie WX, Li XP, Huang KT, Du ZH, Cong WJ, Zhou LH, Ye TS, Chen JF (2015) Adenosine A2A receptors mediate anti-inflammatory effects of electroacupuncture on synovitis in mice with collagen-induced arthritis. Evid Based Complement Alternat Med 2015:809560

    PubMed  PubMed Central  Google Scholar 

  26. Ye TS, Du ZH, Li ZH, Xie WX, Huang KT, Chen Y, Chen ZY, Hu H, Wang JL, Fang JQ (2016) Repeated electroacupuncture persistently elevates adenosine and ameliorates collagen-induced arthritis in rats. Evid Based Complement Alternat Med 2016:3632168

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lao L, Zhang RX, Zhang G, Wang X, Berman BM, Ren K (2004) A parametric study of electroacupuncture on persistent hyperalgesia and Fos protein expression in rats. Brain Res 1020:18–29

    Article  CAS  PubMed  Google Scholar 

  28. Zhang RX, Lao L, Wang X, Fan A, Wang L, Ren K, Berman BM (2005) Electroacupuncture attenuates inflammation in a rat model. J Altern Complement Med 11:135–142

    Article  PubMed  Google Scholar 

  29. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  PubMed  Google Scholar 

  30. Xiang HC, Lin LX, Hu XF, Zhu H, Li HP, Zhang RY, Hu L, Liu WT, Zhao YL, Shu Y, Pan HL, Li M (2019) AMPK activation attenuates inflammatory pain through inhibiting NF-kappaB activation and IL-1beta expression. J Neuroinflammation 16:34

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Liu Y, Wang Y, Chen X, Wang C, Chen X, Yuan X, Liu L, Yang J, Zhou X (2022) Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARalpha-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res 41:1

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baral P, Udit S, Chiu IM (2019) Pain and immunity: implications for host defence. Nat Rev Immunol 19:433–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marret E, Kurdi O, Zufferey P, Bonnet F (2005) Effects of nonsteroidal antiinflammatory drugs on patient-controlled analgesia morphine side effects: meta-analysis of randomized controlled trials. Anesthesiology 102:1249–1260

    Article  CAS  PubMed  Google Scholar 

  34. Kim JH, Min BI, Schmidt D, Lee HJ, Park DS (2000) The difference between electroacupuncture only and electroacupuncture with manipulation on analgesia in rats. Neurosci Lett 279:149–152

    Article  CAS  PubMed  Google Scholar 

  35. Li A, Wang Y, Xin J, Lao L, Ren K, Berman BM, Zhang RX (2007) Electroacupuncture suppresses hyperalgesia and spinal Fos expression by activating the descending inhibitory system. Brain Res 1186:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu XJ, Gingrich JR, Vargas-Caballero M, Dong YN, Sengar A, Beggs S, Wang SH, Ding HK, Frankland PW, Salter MW (2008) Treatment of inflammatory and neuropathic pain by uncoupling Src from the NMDA receptor complex. Nat Med 14:1325–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pomeranz B, Stux G, Han C (1989) Scientific bases of acupuncture. Springer-Verlag, Berlin

    Book  Google Scholar 

  38. Wan C, Xu Y, Cen B, Xia Y, Yao L, Zheng Y, Zhao J, He S, Chen Y (2021) Neuregulin1-ErbB4 signaling in spinal cord participates in electroacupuncture analgesia in inflammatory pain. Front Neurosci 15:636348

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ (2018) PD-L1. J Clin Pathol 71:189–194

    Article  PubMed  Google Scholar 

  40. Sim YB, Park SH, Kang YJ, Jung JS, Ryu OH, Choi MG, Choi SS, Suh HW (2013) Interleukin-1beta (IL-1beta) increases pain behavior and the blood glucose level: possible involvement of glucocorticoid system. Cytokine 64:351–356

    Article  CAS  PubMed  Google Scholar 

  41. Luchting B, Heyn J, Woehrle T, Rachinger-Adam B, Kreth S, Hinske LC, Azad SC (2016) Differential expression of P2X7 receptor and IL-1beta in nociceptive and neuropathic pain. J Neuroinflammation 13:100

    Article  PubMed  PubMed Central  Google Scholar 

  42. He H, Zhou Y, Zhou Y, Zhuang J, He X, Wang S, Lin W (2018) Dexmedetomidine mitigates microglia-mediated neuroinflammation through upregulation of programmed cell death protein 1 in a rat spinal cord injury model. J Neurotrauma 35:2591–2603

    Article  PubMed  Google Scholar 

  43. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, Chen G (2017) Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation 14:36

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yao A, Liu F, Chen K, Tang L, Liu L, Zhang K, Yu C, Bian G, Guo H, Zheng J, Cheng P, Ju G, Wang J (2014) Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice. Neurotherapeutics 11:636–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, Yu Y, Liu S, Cao X (2008) Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9:542–550

    Article  CAS  PubMed  Google Scholar 

  46. Adhikari A, Martel C, Marette A, Olivier M (2017) Hepatocyte SHP-1 is a critical modulator of inflammation during endotoxemia. Sci Rep 7:2218

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (grant 2018YFC2001802 to X. Chen); the National Natural Science Foundation (grant 82071251 to X. Chen); the Hubei Province Key Research and Development Program (grant 2021BCA145 to X. Chen).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Daling Deng and Feng Xu. The first draft of the manuscript was written by Daling Deng, and all authors commented on previous versions of the manuscript. Daling Deng and Feng Xu contribute equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangdong Chen.

Ethics declarations

Ethics Approval

All experimental procedures were carried out in accordance with the ethical guidelines of the International Association for the Study of Pain (Zimmermann 1983) and approved by the Animal Care Committee at Huazhong University of Science and Technology.

Consent to Participate

Not applicable.

Consent for Publication

All authors have consented to publish in the journal Molecular Neurobiology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1838 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Xu, F., Ma, L. et al. Electroacupuncture Alleviates CFA-Induced Inflammatory Pain via PD-L1/PD-1-SHP-1 Pathway. Mol Neurobiol 60, 2922–2936 (2023). https://doi.org/10.1007/s12035-023-03233-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03233-x

Keywords

Navigation