Skip to main content

Advertisement

Log in

Agomir miRNA-150-5p alleviates pristane-induced lupus by suppressing myeloid dendritic cells activation and inflammation via TREM-1 axis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Triggering receptors expressed on myeloid cells-1 (TREM-1) has been shown to participate in inflammatory autoimmune diseases. Nevertheless, the detailed underlying mechanisms and therapeutic benefits by targeting TREM-1 remain elusive, especially in myeloid dendritic cells (mDCs) and systemic lupus erythematosus (SLE). Disorders of epigenetic processes including non-coding RNAs give rise to SLE, resulting in complicated syndromes. Here, we aim to address this issue and explore the miRNA to inhibit the activation of mDCs and alleviate the progress of SLE by targeting TREM-1 signal axis.

Methods

Bioinformatics methods were used to analyze the differentially expressed genes (DEGs) between patients with SLE and healthy individuals by four mRNA microarray datasets from Gene Expression Omnibus (GEO). Then we identified the expression of TREM-1 and its soluble form (sTREM-1) in clinical samples by ELISA, quantitative real-time PCR and Western blot. Phenotypic and functional changes of mDCs elicited by TREM-1 agonist were determined. Three databases of miRNAs target prediction and a dual-luciferase reporter assay were used to screen and verify miRNAs that can directly inhibit TREM-1 expression in vitro. Moreover, pristane-induced lupus mice were injected with miR-150-5p agomir to evaluate the effects of miR-150-5p on mDCs in lymphatic organs and disease activity in vivo.

Results

We screened TREM-1 as one of the hub genes closely correlated with the progression of SLE and identified sTREM-1 in serum as a valuable diagnostic biomarker for SLE. Moreover, activation of TREM-1 by its agonist promoted activation and chemotaxis of mDCs and increased the production of inflammatory cytokines and chemokines, showing higher expression of IL-6, TNF-α, and MCP-1. We showed that lupus mice displayed a unique miRNA signature in spleen, among which miR-150 was the most significantly expressed miRNA that targeting TREM-1 compared with wild type group. Transfection of miRNA-150-5p mimics directly suppressed the expression of TREM-1 by binding to its 3' UTR. Our in vivo experiments first indicated that administration of miR-150-5p agomir effectively ameliorated lupus symptoms. Intriguingly, miR-150 inhibited the over activation of mDCs through TREM-1 signal pathway in lymphatic organs and renal tissues.

Conclusions

TREM-1 represents a potentially novel therapeutic target and we identify miR-150-5p as one of the mechanisms to alleviate lupus disease, which is attributable for inhibiting mDCs activation through TREM-1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

SLE:

Systemic lupus erythematosus

miRNAs:

MicroRNAs

WT:

Wild type

HE:

Hematoxylin–eosin

IF:

Immunofluorescence

RT-PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

DEGs:

Differentially expressed genes

PBMC:

Peripheral blood mononuclear cell

C3:

Complement 3

Ig:

Immunoglobulin

HC:

Healthy control

NC:

Negative control

SLEDAI:

Systemic lupus erythematosus disease activity index

ROC:

Receiver operating characteristic

AUC:

Area under the ROC curve

ELISA:

Enzyme-linked immunosorbent assay

WB:

Western blot

PAS:

Periodic acid-Schiff

References

  1. Kiriakidou M, Ching CL. Systemic lupus erythematosus. Ann Intern Med 2020; 172:ITC81-ITC96.

  2. Durcan L, O’Dwyer T, Petri M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet. 2019;393:2332–43.

    Article  PubMed  Google Scholar 

  3. Schwartz N, Goilav B, Putterman C. The pathogenesis, diagnosis and treatment of lupus nephritis. Curr Opin Rheumatol. 2014;26:502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat Rev Rheumatol. 2019;15:403–12.

    Article  PubMed  Google Scholar 

  5. Chasset F, Francès C. Current concepts and future approaches in the treatment of cutaneous lupus erythematosus: a comprehensive review. Drugs. 2019;79:1199–215.

    Article  PubMed  Google Scholar 

  6. Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat Med. 2022;28:2124–32.

    Article  CAS  PubMed  Google Scholar 

  7. Guo Q, Chen C, Wu Z, Zhang W, Wang L, Yu J, et al. Engineered PD-1/TIGIT dual-activating cell-membrane nanoparticles with dexamethasone act synergistically to shape the effector T cell/Treg balance and alleviate systemic lupus erythematosus. Biomaterials. 2022;285: 121517.

    Article  CAS  PubMed  Google Scholar 

  8. Szelinski F, Lino AC, Dörner T. B cells in systemic lupus erythematosus. Curr Opin Rheumatol. 2022;34:125–32.

    Article  CAS  PubMed  Google Scholar 

  9. Dutertre C-A, Becht E, Irac SE, Khalilnezhad A, Narang V, Khalilnezhad S, et al. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity. 2019; 51.

  10. Xiao ZX, Hu X, Zhang X, Chen Z, Wang J, Jin K, et al. High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther. 2020;5:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Zhang X, Cao X. Dendritic cells in systemic lupus erythematosus: from pathogenesis to therapeutic applications. J Autoimmun. 2022;132: 102856.

    Article  CAS  PubMed  Google Scholar 

  12. Crispín JC, Vargas-Rojas MI, Monsiváis-Urenda A, Alcocer-Varela J. Phenotype and function of dendritic cells of patients with systemic lupus erythematosus. Clin Immunol. 2012;143:45–50.

    Article  PubMed  Google Scholar 

  13. Gleisner MA, Reyes P, Alfaro J, Solanes P, Simon V, Crisostomo N, et al. Dendritic and stromal cells from the spleen of lupic mice present phenotypic and functional abnormalities. Mol Immunol. 2013;54:423–34.

    Article  CAS  PubMed  Google Scholar 

  14. Gao S, Gong Y, Ji J, Yuan L, Han L, Guo Y, et al. A new benzenediamine derivative modulates Toll-like receptors-induced myeloid dendritic cells activation and ameliorates lupus-like syndrome in MRLlpr/lpr mice. Eur J Pharmacol 2017; 803.

  15. Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol. 2006;7:1266–73.

    Article  CAS  PubMed  Google Scholar 

  16. Molad Y, Pokroy-Shapira E, Carmon V. CpG-oligodeoxynucleotide-induced TLR9 activation regulates macrophage TREM-1 expression and shedding. Innate Immun. 2013;19:623–30.

    Article  PubMed  Google Scholar 

  17. Gómez-Piña V, Soares-Schanoski A, Rodríguez-Rojas A, Del Fresno C, García F, Vallejo-Cremades MT, et al. Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes. J Immunol. 2007;179:4065–73.

    Article  PubMed  Google Scholar 

  18. Gingras M-C, Lapillonne H, Margolin JF. TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development. Mol Immunol. 2002;38:817–24.

    Article  CAS  PubMed  Google Scholar 

  19. Dimopoulou I, Pelekanou A, Mavrou I, Savva A, Tzanela M, Kotsaki A, et al. Early serum levels of soluble triggering receptor expressed on myeloid cells-1 in septic patients: correlation with monocyte gene expression. J Crit Care. 2012;27:294–300.

    Article  CAS  PubMed  Google Scholar 

  20. Gibot S, Cravoisy A, Levy B, Bene M-C, Faure G, Bollaert P-E. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med. 2004;350:451–8.

    Article  CAS  PubMed  Google Scholar 

  21. Choi ST, Kang E-J, Ha YJ, Song J-S. Levels of plasma-soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) are correlated with disease activity in rheumatoid arthritis. J Rheumatol. 2012;39:933–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wu B, Brooks JD. Gene expression changes induced by unilateral ureteral obstruction in mice. J Urol. 2012;188:1033–41.

    Article  CAS  PubMed  Google Scholar 

  23. Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A. The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res. 2012;72:3977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pelham CJ, Pandya AN, Agrawal DK. Triggering receptor expressed on myeloid cells receptor family modulators: a patent review. Expert Opin Ther Pat. 2014;24:1383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Denning N-L, Aziz M, Murao A, Gurien SD, Ochani M, Prince JM, et al. Extracellular CIRP as an endogenous TREM-1 ligand to fuel inflammation in sepsis. JCI Insight 2020; 5.

  26. Bouchon A, Dietrich J, Colonna M. Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol. 2000;164:4991–5.

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen-Lefebvre AT, Ajith A, Portik-Dobos V, Horuzsko DD, Arbab AS, Dzutsev A, et al. The innate immune receptor TREM-1 promotes liver injury and fibrosis. J Clin Invest. 2018;128:4870–83.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Joffre J, Potteaux S, Zeboudj L, Loyer X, Boufenzer A, Laurans L, et al. Genetic and pharmacological inhibition of TREM-1 limits the development of experimental atherosclerosis. J Am Coll Cardiol. 2016;68:2776–93.

    Article  CAS  PubMed  Google Scholar 

  29. Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, et al. Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology. 2019;70:198–214.

    Article  CAS  PubMed  Google Scholar 

  30. Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, et al. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev. 2019;18:25–35.

    Article  CAS  PubMed  Google Scholar 

  31. Bouchon A, Facchetti F, Weigand MA, Colonna M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature. 2001;410:1103–7.

    Article  CAS  PubMed  Google Scholar 

  32. Tammaro A, Derive M, Gibot S, Leemans JC, Florquin S, Dessing MC. TREM-1 and its potential ligands in non-infectious diseases: from biology to clinical perspectives. Pharmacol Ther. 2017;177:81–95.

    Article  CAS  PubMed  Google Scholar 

  33. Pandupuspitasari NS, Khan FA, Huang C-J, Chen X, Zhang S. Novel attributions of TREMs in immunity. Curr Issues Mol Biol. 2016;20:47–54.

    PubMed  Google Scholar 

  34. Gao S, Yuan L, Wang Y, Hua C. Enhanced expression of TREM-1 in splenic cDCs in lupus prone mice and it was modulated by miRNA-150. Mol Immunol. 2017;81:127–34.

    Article  CAS  PubMed  Google Scholar 

  35. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  CAS  PubMed  Google Scholar 

  36. Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29:288–91.

    PubMed  Google Scholar 

  37. Huang R-Y, Yu Y-L, Cheng W-C, OuYang C-N, Fu E, Chu C-L. Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol. 2010;184:6815–21.

    Article  CAS  PubMed  Google Scholar 

  38. Lu M, Xu C, Zhang Q, Wu X, Tang L, Wang X, et al. Inhibition of p21-activated kinase 1 attenuates the cardinal features of asthma through suppressing the lymph node homing of dendritic cells. Biochem Pharmacol. 2018;154:464–73.

    Article  CAS  PubMed  Google Scholar 

  39. Ding C, Chen X, Dascani P, Hu X, Bolli R, Zhang H-G, et al. STAT3 signaling in b cells is critical for germinal center maintenance and contributes to the pathogenesis of murine models of lupus. J Immunol. 2016;196:4477–86.

    Article  CAS  PubMed  Google Scholar 

  40. Geng L, Tang X, Zhou K, Wang D, Wang S, Yao G, et al. MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cell Mol Immunol. 2019;16:260–74.

    Article  CAS  PubMed  Google Scholar 

  41. Xu J, Qi Y, Xu W-H, Liu Y, Qiu L, Wang K-Q, et al. Matrine derivate MASM suppresses LPS-induced phenotypic and functional maturation of murine bone marrow-derived dendritic cells. Int Immunopharmacol. 2016;36:59–66.

    Article  CAS  PubMed  Google Scholar 

  42. Shinde R, Hezaveh K, Halaby MJ, Kloetgen A, Chakravarthy A, da Silva MT, et al. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans. Nat Immunol. 2018;19:571–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, et al. Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 2017; 21.

  44. Cavaillon J-M. Monocyte TREM-1 membrane expression in non-infectious inflammation. Crit Care. 2009;13:152.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Molad Y, Pokroy-Shapira E, Kaptzan T, Monselise A, Shalita-Chesner M, Monselise Y. Serum soluble triggering receptor on myeloid cells-1 (sTREM-1) is elevated in systemic lupus erythematosus but does not distinguish between lupus alone and concurrent infection. Inflammation. 2013;36:1519–24.

    Article  CAS  PubMed  Google Scholar 

  46. Bassyouni IH, Fawzi S, Gheita TA, Bassyouni RH, Nasr AS, El Bakry SA, et al. Clinical association of a soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in patients with systemic lupus erythematosus. Immunol Invest. 2017;46:38–47.

    Article  CAS  PubMed  Google Scholar 

  47. Liu C-J, Tsai C-Y, Chiang S-H, Tang S-J, Chen N-J, Mak TW, et al. Triggering receptor expressed on myeloid cells-1 (TREM-1) deficiency augments BAFF production to promote lupus progression. J Autoimmun 2017; 78.

  48. Haselmayer P, Grosse-Hovest L, von Landenberg P, Schild H, Radsak MP. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood. 2007;110:1029–35.

    Article  CAS  PubMed  Google Scholar 

  49. Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science. 2001;294:1540–3.

    Article  CAS  PubMed  Google Scholar 

  50. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100:2610–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chan VS-F, Nie Y-J, Shen N, Yan S, Mok M-Y, Lau C-S. Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun Rev 2012; 11:890–897.

  52. Hong S-M, Liu C, Yin Z, Wu L, Qu B, Shen N. MicroRNAs in systemic lupus erythematosus: a perspective on the path from biological discoveries to clinical practice. Curr Rheumatol Rep. 2020;22:17.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun. 2020;109: 102438.

    Article  CAS  PubMed  Google Scholar 

  54. Gao X, Song Y, Du P, Yang S, Cui H, Lu S, et al. Administration of a microRNA-21 inhibitor improves the lupus-like phenotype in MRL/lpr mice by repressing Tfh cell-mediated autoimmune responses. Int Immunopharmacol. 2022;106: 108578.

    Article  CAS  PubMed  Google Scholar 

  55. Qi H, Cao Q, Liu Q. MicroRNA-16 directly binds to DEC2 and inactivates the TLR4 signaling pathway to inhibit lupus nephritis-induced kidney tissue hyperplasia and mesangial cell proliferation. Int Immunopharmacol. 2020;88: 106859.

    Article  CAS  PubMed  Google Scholar 

  56. Cheng T, Ding S, Liu S, Li Y, Sun L. Human umbilical cord-derived mesenchymal stem cell therapy ameliorates lupus through increasing CD4+ T cell senescence via MiR-199a-5p/Sirt1/p53 axis. Theranostics. 2021;11:893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by National Natural Science Foundation of China (grant no. 81901660), Science and Technology Plan Project of Wenzhou (grant nos. Y20220389, Y20220045), and Zhejiang Province Natural Science Foundation (grant no. LTGY23H100001).

Author information

Authors and Affiliations

Authors

Contributions

CH conceived the project. CH and CY designed the experiments. CY collected and assembled data with help from WW, SG, JY, TZ, ZX, YX, HQ, XZ, SL and AY. CH and CY prepared the first draft of the manuscript. LW, JW and CH supervised the work. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Liangxing Wang, Jianguang Wang or Chunyan Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Informed consent was obtained from all human participants. All experiments were carried out in accordance with guidelines from the research committee at Wenzhou Medical University (Certificate No. SYXK- (Zhejiang, China) (2018–0017)). The study protocol was approved by the Clinical Research Ethics Committees of the First Affiliated Hospital of Wenzhou Medical University.

Additional information

Responsible Editor: Masaru Ishii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, C., Wang, W., Gao, S. et al. Agomir miRNA-150-5p alleviates pristane-induced lupus by suppressing myeloid dendritic cells activation and inflammation via TREM-1 axis. Inflamm. Res. 72, 1391–1408 (2023). https://doi.org/10.1007/s00011-023-01754-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01754-8

Keywords

Navigation