Skip to main content
Log in

Inflammation, coagulation, and cellular injury in heat-induced shock

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

The number of heatstroke victims hit record numbers in 2022 as global warming continues. In heat-induced injuries, circulatory shock is the most severe and deadly complication. This review aims to examine the mechanisms and potential approaches to heat-induced shock and the life-threatening complications of heatstroke.

Methods

A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning heatstroke, shock, inflammation, coagulopathy, endothelial cell, cell death, and heat shock proteins.

Results

Dehydration and heat-induced cardiomyopathy were reported as the major causes of heat-induced shock, although other heat-induced injuries are also involved in the pathogenesis of circulatory shock. In addition to dehydration, the blood volume decreases considerably due to the increased vascular permeability as a consequence of endothelial damage. Systemic inflammation is induced by factors that include elevated cytokine and chemokine levels, dysregulated coagulation/fibrinolytic responses, and the release of damage-associated molecular patterns (DAMPs) from necrotic cell death that cause distributive shock. The cytoprotective heat shock proteins can also facilitate circulatory disturbance under excess heat stress.

Conclusions

Multiple mechanisms are involved in the pathogenesis of heat-induced shock. In addition to dehydration, heat stress-induced cardiomyopathy due to the thermal damage of mitochondria, upregulated inflammation via damage-associated molecular patterns released from oncotic cells, unbalanced coagulation/fibrinolysis, and endothelial damage are the major factors that are related to circulatory shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gostimirovic M, Novakovic R, Rajkovic J, Djokic V, Terzic D, Putnik S, Gojkovic-Bukarica L. The influence of climate change on human cardiovascular function. Arch Environ Occup Health. 2020;75(7):406–14.

    Article  PubMed  Google Scholar 

  2. Bouchama A, Abuyassin B, Lehe C, Laitano O, Jay O, O’Connor FG, Leon LR. Classic and exertional heatstroke. Nat Rev Dis Primers. 2022;8(1):8.

    Article  PubMed  Google Scholar 

  3. Roberts GT, Ghebeh H, Chishti MA, Al-Mohanna F, El-Sayed R, Al-Mohanna F, Bouchama A. Microvascular injury, thrombosis, inflammation, and apoptosis in the pathogenesis of heatstroke: a study in baboon model. Arterioscler Thromb Vasc Biol. 2008;28(6):1130–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bruchim Y, Loeb E, Saragusty J, Aroch I. Pathological findings in dogs with fatal heatstroke. J Comp Pathol. 2009;140(2–3):97–104.

    Article  CAS  PubMed  Google Scholar 

  5. Wang JL, Ke DS, Lin MT. Heat shock pretreatment may protect against heatstroke-induced circulatory shock and cerebral ischemia by reducing oxidative stress and energy depletion. Shock. 2005;23(2):161–7.

    Article  PubMed  Google Scholar 

  6. Chou YT, Lai ST, Lee CC, Lin MT. Hypothermia attenuates circulatory shock and cerebral ischemia in experimental heatstroke. Shock. 2003;19(4):388–93.

    Article  PubMed  Google Scholar 

  7. Bouchama A, Roberts G, Al Mohanna F, El-Sayed R, Lach B, Chollet-Martin S, Ollivier V, Al Baradei R, Loualich A, Nakeeb S, Eldali A, de Prost D. Inflammatory, hemostatic, and clinical changes in a baboon experimental model for heatstroke. J Appl Physiol. 2005;98(2):697–705.

    Article  CAS  PubMed  Google Scholar 

  8. Bouchama A, Ollivier V, Roberts G, Al Mohanna F, de Prost D, Eldali A, Saussereau E, El-Sayed R, Chollet-Martin S. Experimental heatstroke in baboon: analysis of the systemic inflammatory response. Shock. 2005;24(4):332–5.

    Article  CAS  PubMed  Google Scholar 

  9. Iba T, Sawada T, Kondo Y, Kondo K, Levy JH. Morphological changes of blood cells in a rat model of heatstroke: a pilot study. J Clin Med. 2022;11:4821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hayashida K, Kondo Y, Hifumi T, Shimazaki J, Oda Y, Shiraishi S, Fukuda T, Sasaki J, Shimizu K. A novel early risk assessment tool for detecting clinical outcomes in patients with heat-related illness (J-ERATO score): development and validation in independent cohorts in Japan. PLoS ONE. 2018;13(5):e0197032.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen WT, Lin CH, Hsieh MH, Huang CY, Yeh JS. Stress-induced cardiomyopathy caused by heat stroke. Ann Emerg Med. 2012;60(1):63–6.

    Article  PubMed  Google Scholar 

  12. Leon LR, Helwig BG. Role of endotoxin and cytokines in the systemic inflammatory response to heat injury. Front Biosci. 2010;2(3):916–38.

    Article  Google Scholar 

  13. Mustafa KY, Omer O, Khogali M, Jamjoom A, Gumaa KA, El-Nasr NA, Gader MA. Blood coagulation and fibrinolysis in heat stroke. Br J Haematol. 1985;61(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  14. DuBose DA, Hinkle JR, Morehouse DH, Ogle PL. Model for environmental heat damage of the blood vessel barrier. Wilderness Environ Med. 1998;9(3):130–6.

    Article  CAS  PubMed  Google Scholar 

  15. Chang CK, Chang CP, Chiu WT, Lin MT. Prevention and repair of circulatory shock and cerebral ischemia/injury by various agents in experimental heatstroke. Curr Med Chem. 2006;13(26):3145–54.

    Article  CAS  PubMed  Google Scholar 

  16. Kuo JR, Lin CL, Chio CC, Wang JJ, Lin MT. Effects of hypertonic (3%) saline in rats with circulatory shock and cerebral ischemia after heatstroke. Intensive Care Med. 2003;29(9):1567–73.

    Article  PubMed  Google Scholar 

  17. Liu CC, Ke D, Chen ZC, Lin MT. Hydroxyethyl starch produces attenuation of circulatory shock and cerebral ischemia during heatstroke. Shock. 2004;22(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  18. Liu CC, Cheng BC, Lin MT, Lin HJ. Small volume resuscitation in a rat model of heatstroke. Am J Med Sci. 2009;337(2):79–87.

    Article  PubMed  Google Scholar 

  19. Sankoff J. Heat illnesses: a hot topic in the setting of global climate change. Aust Fam Physician. 2015;44(1–2):22–6.

    PubMed  Google Scholar 

  20. Marchand M, Gin K. The cardiovascular system in heat stroke. CJC Open. 2021;4(2):158–63.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bathini T, Thongprayoon C, Petnak T, Chewcharat A, Cheungpasitporn W, Boonpheng B, Chokesuwattanaskul R, Prasitlumkum N, Vallabhajosyula S, Kaewput W. Circulatory failure among hospitalizations for heatstroke in the united states. Medicines. 2020;7(6):32.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bathini T, Thongprayoon C, Chewcharat A, Petnak T, Cheungpasitporn W, Boonpheng B, Prasitlumkum N, Chokesuwattanaskul R, Vallabhajosyula S, Kaewput W. Acute myocardial infarction among hospitalizations for heat stroke in the united states. J Clin Med. 2020;9(5):1357.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Quinn CM, Duran RM, Audet GN, Charkoudian N, Leon LR. Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a conscious rat model. J Appl Physiol. 2014;117(9):971–8.

    Article  PubMed  Google Scholar 

  24. Kang R, Nagoshi T, Kimura H, Tanaka TD, Yoshii A, Inoue Y, Morimoto S, Ogawa K, Minai K, Ogawa T, Kawai M, Yoshimura M. Possible association between body temperature and B-Type natriuretic peptide in patients with cardiovascular diseases. J Card Fail. 2021;27(1):75–82.

    Article  PubMed  Google Scholar 

  25. Nakagawa Y, Inoue H, Shinone K, Ikemura M, Nata M. Molecular biological analysis of cardiac effect of high temperature in rats. Leg Med. 2012;14(2):63–8.

    Article  CAS  Google Scholar 

  26. Yi G, Li L, Luo M, He X, Zou Z, Gu Z, Su L. Heat stress induces intestinal injury through lysosome- and mitochondria-dependent pathway in vivo and in vitro. Oncotarget. 2017;8(25):40741–55.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen HH, Tseng YS, Kuo NC, Kung CW, Amin S, Lam KK, Lee YM. Alpha-lipoic acid protects cardiomyocytes against heat stroke-induced apoptosis and inflammatory responses associated with the induction of hsp70 and activation of autophagy. Mediators Inflamm. 2019;2019:8187529.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bouchama A, Al-Sedairy S, Siddiqui S, Shail E, Rezeig M. Elevated pyrogenic cytokines in heatstroke. Chest. 1993;104(5):1498–502.

    Article  CAS  PubMed  Google Scholar 

  29. Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.

    Article  PubMed  Google Scholar 

  30. Lian P, Braber S, Garssen J, Wichers HJ, Folkerts G, Fink-Gremmels J, Varasteh S. Beyond heat stress: intestinal integrity disruption and mechanism-based intervention strategies. Nutrients. 2020;12(3):734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Welc SS, Clanton TL, Dineen SM, Leon LR. Heat stroke activates a stress-induced cytokine response in skeletal muscle. J Appl Physiol. 2013;115(8):1126–37.

    Article  CAS  PubMed  Google Scholar 

  32. Bruchim Y, Ginsburg I, Segev G, Mreisat A, Avital Y, Aroch I, Horowitz M. Serum histones as biomarkers of the severity of heatstroke in dogs. Cell Stress Chaperones. 2017;22(6):903–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang ZT, Gu XL, Zhao X, He X, Shi HW, Zhang K, Zhang YM, Su YN, Zhu JB, Li ZW, Li GB. NLRP3 ablation enhances tolerance in heat stroke pathology by inhibiting IL-1β-mediated neuroinflammation. J Neuroinflammation. 2021;18(1):128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xia ZN, Zong Y, Zhang ZT, Chen JK, Ma XJ, Liu YG, Zhao LJ, Lu GC. Dexmedetomidine protects against multi-organ dysfunction induced by heatstroke via sustaining the intestinal integrity. Shock. 2017;48(2):260–9.

    Article  CAS  PubMed  Google Scholar 

  35. Geng Y, Ma Q, Liu YN, Peng N, Yuan FF, Li XG, Li M, Wu YS, Li BL, Song WB, Zhu W, Xu WW, Fan J, Su L. Heatstroke induces liver injury via IL-1β and HMGB1-induced pyroptosis. J Hepatol. 2015;63(3):622–33.

    Article  CAS  PubMed  Google Scholar 

  36. Zeller L, Novack V, Barski L, Jotkowitz A, Almog Y. Exertional heatstroke: clinical characteristics, diagnostic and therapeutic considerations. Eur J Intern Med. 2011;22(3):296–9.

    Article  PubMed  Google Scholar 

  37. Shen KH, Chang CK, Lin MT, Chang CP. Interleukin-1 receptor antagonist restores homeostatic function and limits multiorgan damage in heatstroke. Eur J Appl Physiol. 2008;103(5):561–8.

    Article  CAS  PubMed  Google Scholar 

  38. Umemura Y, Ogura H, Matsuura H, Ebihara T, Shimizu K, Shimazu T. Bone marrow-derived mononuclear cell therapy can attenuate systemic inflammation in rat heatstroke. Scand J Trauma Resusc Emerg Med. 2018;26(1):97.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Al-Mashhadani SA, Gader AG, Al Harthi SS, Kangav D, Shaheen FA, Bogus F. The coagulopathy of heat stroke: alterations in coagulation and fibrinolysis in heat stroke patients during the pilgrimage (Haj) to Makkah. Blood Coagul Fibrinolysis. 1994;5(5):731–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hernández-Espinosa D, Mota R, Miñano A, Ordóñez A, Yélamos J, Vicente V, Corral J. In vivo effects of hyperthermia on the functional and conformational characteristics of antithrombin. J Thromb Haemost. 2007;5(5):963–70.

    Article  PubMed  Google Scholar 

  41. Matsumoto H, Takeba J, Umakoshi K, Nakabayashi Y, Moriyama N, Annen S, Ohshita M, Kikuchi S, Sato N, Aibiki M. Successful treatment for disseminated intravascular coagulation (DIC) corresponding to phenotype changes in a heat stroke patient. J Intensive Care. 2019;7:2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Proctor EA, Dineen SM, Van Nostrand SC, Kuhn MK, Barrett CD, Brubaker DK, Yaffe MB, Lauffenburger DA, Leon LR. Coagulopathy signature precedes and predicts severity of end-organ heat stroke pathology in a mouse model. J Thromb Haemost. 2020;18(8):1900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimazaki J, Hifumi T, Shimizu K, et al. Clinical characteristics, prognostic factors, and outcomes of heat-related illness (Heatstroke Study 2017–2018). Acute Med Surg. 2020;7:e516.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Iba T, Levi M, Thachil J, Levy JH. Disseminated intravascular coagulation: the past, present, and future considerations. Semin Thromb Hemost. 2022;48(8):978–87.

    Article  PubMed  Google Scholar 

  45. Huisse MG, Pease S, Hurtado-Nedelec M, et al. Leukocyte activation: the link between inflammation and coagulation during heatstroke A study of patients during the heat wave in Paris. Crit Care Med. 2008;36:2288–95.

    Article  CAS  PubMed  Google Scholar 

  46. Iba T, Connors JM, Levi M, Levy JH. Heatstroke-induced coagulopathy: Biomarkers, mechanistic insights, and patient management. EClinicalMedicine. 2022;44:101276.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bouchama A, Kunzelmann C, Dehbi M, Kwaasi A, Eldali A, Zobairi F, Freyssinet JM, de Prost D. Recombinant activated protein C attenuates endothelial injury and inhibits procoagulant microparticles release in baboon heatstroke. Arterioscler Thromb Vasc Biol. 2008;28(7):1318–25.

    Article  CAS  PubMed  Google Scholar 

  48. Ward PC, McKenna RW, Kroft SH. White blood cell changes in hyperthermia. Br J Haematol. 2007;138(2):130.

    Article  PubMed  Google Scholar 

  49. Mastrorilli C, Welles EG, Hux B, Christopherson PW. Botryoid nuclei in the peripheral blood of a dog with heatstroke. Vet Clin Pathol. 2013;42(2):145–9.

    Article  PubMed  Google Scholar 

  50. Majno G, Joris I. Apoptosis, oncosis, and necrosis An overview of cell death. Am J Pathol. 1995;146(1):3–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yan YE, Zhao YQ, Wang H, Fan M. Pathophysiological factors underlying heatstroke. Med Hypotheses. 2006;67:609–17.

    Article  CAS  PubMed  Google Scholar 

  52. Epstein Y, Yanovich R. Heatstroke. Reply. N Engl J Med. 2019;381(12):1187.

    PubMed  Google Scholar 

  53. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol. 2000;12(11):1539–46.

    Article  CAS  PubMed  Google Scholar 

  54. Milleron RS, Bratton SB. Heat shock induces apoptosis independently of any known initiator caspase-activating complex. J Biol Chem. 2006;281(25):16991–7000.

    Article  CAS  PubMed  Google Scholar 

  55. Hirose T, Hamaguchi S, Matsumoto N, et al. Presence of neutrophil extracellular traps and citrullinated histone H3 in the bloodstream of critically ill patients. PLoS ONE. 2014;9(11):e111755.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Allam R, Kumar SV, Darisipudi MN, Anders HJ. Extracellular histones in tissue injury and inflammation. J Mol Med. 2014;92(5):465–72.

    Article  CAS  PubMed  Google Scholar 

  57. Li Y, Liu Z, Shi X, Tong H, Su L. Prognostic value of plasma exosomal levels of histone H3 protein in patients with heat stroke. Exp Ther Med. 2021;22(3):922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tong H, Tang Y, Chen Y, Yuan F, Liu Z, Peng N, Tang L, Su L. HMGB1 activity inhibition alleviating liver injury in heatstroke. J Trauma Acute Care Surg. 2013;74(3):801–7.

    Article  CAS  PubMed  Google Scholar 

  59. Tong HS, Tang YQ, Chen Y, Qiu JM, Wen Q, Su L. Early elevated HMGB1 level predicting the outcome in exertional heatstroke. J Trauma. 2011;71(4):808–14.

    CAS  PubMed  Google Scholar 

  60. Dehbi M, Uzzaman T, Baturcam E, Eldali A, Ventura W, Bouchama A. Toll-like receptor 4 and high-mobility group box 1 are critical mediators of tissue injury and survival in a mouse model for heatstroke. PLoS ONE. 2012;7(9):e44100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xue L, Guo W, Li L, Ou S, Zhu T, Cai L, Ding W, Wu W. Metabolomic profiling identifies a novel mechanism for heat stroke-related acute kidney injury. Mol Med Rep. 2021;23(4):241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bouchama A, Hammami MM, Haq A, Jackson J, Al-Sedairy S. Evidence for endothelial cell activation/injury in heatstroke. Crit Care Med. 1996;24(7):1173–8.

    Article  CAS  PubMed  Google Scholar 

  63. Tong H, Wan P, Zhang X, Duan P, Tang Y, Chen Y, Tang L, Su L. Vascular endothelial cell injury partly induced by mesenteric lymph in heat stroke. Inflammation. 2014;37(1):27–34.

    Article  CAS  PubMed  Google Scholar 

  64. Yamaguchi T, Shimizu K, Kokubu Y, Nishijima M, Takeda S, Ogura H, Kawabata K. Effect of heat stress on blood-brain barrier integrity in iPS cell-derived microvascular endothelial cell models. PLoS ONE. 2019;14(9):e0222113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roberts GT, Chishti MA, Al-Mohanna FH, El-Sayed RM, Bouchama A. Vascular endothelium is severely perturbed and undergoes apoptosis in experimental heatstroke in primates. Blood. 2005;106(11):3972.

    Article  Google Scholar 

  66. Brinton MR, Tagge CA, Stewart RJ, Cheung AK, Shiu YT, Christensen DA. Thermal sensitivity of endothelial cells on synthetic vascular graft material. Int J Hyperthermia. 2012;28(2):163–74.

    Article  CAS  PubMed  Google Scholar 

  67. Gu ZT, Wang H, Li L, Liu YS, Deng XB, Huo SF, Yuan FF, Liu ZF, Tong HS, Su L. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep. 2014;4:4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen F, Li H, Zhu G, Chen X, Tang Z. Sodium tanshinone IIA sulfonate improves inflammation, aortic endothelial cell apoptosis, disseminated intravascular coagulation and multiple organ damage in a rat heat stroke model. Mol Med Rep. 2017;16(1):87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pei Y, Geng Y, Su L. Pyroptosis of HUVECs can be induced by heat stroke. Biochem Biophys Res Commun. 2018;506(3):626–31.

    Article  CAS  PubMed  Google Scholar 

  70. Huang W, Xie W, Gong J, Wang W, Cai S, Huang Q, Chen Z, Liu Y. Heat stress induces RIP1/RIP3-dependent necroptosis through the MAPK, NF-κB, and c-Jun signaling pathways in pulmonary vascular endothelial cells. Biochem Biophys Res Commun. 2020;528(1):206–12.

    Article  CAS  PubMed  Google Scholar 

  71. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Iba T, Helms J, Levi M, Levy JH. The role of platelets in heat-related illness and heat-induced coagulopathy. Thromb Res. 2022. https://doi.org/10.1016/j.thromres.2022.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhong L, Wu M, Ji J, Wang C, Liu Z. Association Between Platelet Levels on Admission and 90-day Mortality in Patients With Exertional Heatstroke, a 10 Years Cohort Study. Front Med. 2021;11(8):716058.

    Article  Google Scholar 

  74. Rao GH, Smith CM, Escolar G, White JG. Influence of heat on platelet biochemistry, structure, and function. J Lab Clin Med. 1993;122(4):455–64.

    CAS  PubMed  Google Scholar 

  75. Gader AM, Al-Mashhadani SA, Al-Harthy SS. Direct activation of platelets by heat is the possible trigger of the coagulopathy of heat stroke. Br J Haematol. 1990;74(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  76. Al-Mashhadani SA, Gader AM, Al HS. The role of platelets in the coagulopathy of heatstroke- a study of platelet aggregation in heatstroke patients during the Makkah pilgrimage (Haj) to Makkah. Platelets. 1997;8(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Shi Q, Li S, Du J, Liu J, Dai K. Hyperthermia induces platelet apoptosis and glycoprotein Ibalpha ectodomain shedding. Platelets. 2010;21(3):229–37.

    Article  PubMed  Google Scholar 

  78. Wilhelm EN, González-Alonso J, Chiesa ST, Trangmar SJ, Kalsi KK, Rakobowchuk M. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress. Physiol Rep. 2017;5(21):e13496.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Okubo K, Kurosawa M, Kamiya M, et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat Med. 2018;24(2):232–8.

    Article  CAS  PubMed  Google Scholar 

  80. Oishi S, Tsukiji N, Otake S, Oishi N, Sasaki T, Shirai T, Yoshikawa Y, Takano K, Shinmori H, Inukai T, Kondo T, Suzuki-Inoue K. Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRγ. Blood Adv. 2021;5(7):2017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mozzini C, Xotta G, Garbin U, Fratta Pasini AM, Cominacini L. Non-Exertional Heatstroke: a case report and review of the literature. Am J Case Rep. 2017;18:1058–65.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Papathanassoglou ED, Moynihan JA, Ackerman MH. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med. 2000;28(2):537–49.

    Article  CAS  PubMed  Google Scholar 

  83. Yang CY, Lin MT. Oxidative stress in rats with heatstroke-induced cerebral ischemia. Stroke. 2002;33(3):790–4.

    Article  PubMed  Google Scholar 

  84. Li L, Tan H, Zou Z, Gong J, Zhou J, Peng N, Su L, Maegele M, Cai D, Gu Z. Preventing necroptosis by scavenging ROS production alleviates heat stress-induced intestinal injury. Int J Hyperthermia. 2020;37(1):517–30.

    Article  CAS  PubMed  Google Scholar 

  85. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med. 2004;82(7):434–48.

    Article  CAS  PubMed  Google Scholar 

  86. Beere HM. “The stress of dying”: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci. 2004;117(13):2641–51.

    Article  CAS  PubMed  Google Scholar 

  87. Bouchama A, Kwaasi A, Dehbi M, Al Mohanna F, Eldali A, El-Sayed R, Tbakhi A, Alzahrani AS, Roberts AG. Glucocorticoids do not protect against the lethal effects of experimental heatstroke in baboons. Shock. 2007;27(5):578–83.

    Article  CAS  PubMed  Google Scholar 

  88. Pirkkala L, Nykänen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 2001;15(7):1118–31.

    Article  CAS  PubMed  Google Scholar 

  89. Dehbi M, Baturcam E, Eldali A, Ahmed M, Kwaasi A, Chishti MA, Bouchama A. Hsp-72, a candidate prognostic indicator of heatstroke. Cell Stress Chaperones. 2010;15(5):593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wen YT, Liu TT, Lin YF, Chen CC, Kung WM, Huang CC, Lin TJ, Wang YH, Wei L. Heatstroke Effect on Brain Heme Oxygenase-1 in Rats. Int J Med Sci. 2015;12(9):737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baba HA, Wohlschlaeger J, Stubbe HD, Grabellus F, Aken HV, Schmitz KJ, Otterbach F, Schmid KW, August C, Levkau B, Hinder F. Heat shock protein 72 and apoptosis indicate cardiac decompensation during early multiple organ failure in sheep. Intensive Care Med. 2004;30(7):1405–13.

    Article  PubMed  Google Scholar 

  92. Hsu SF, Chao CM, Chang CP, Lin MT, Cheng BC. Heat shock protein 72 may improve hypotension by increasing cardiac mechanical efficiency and arterial elastance in heatstroke rats. Int J Cardiol. 2016;219:63–9.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by a Grant-in-Aid for Special Research in Subsidies for ordinary expenses of private schools from The Promotion and Mutual Aid Corporation for Private Schools of Japan.

Author information

Authors and Affiliations

Authors

Contributions

Iba T. and Levy J.H. wrote the main manuscript text and Iba T. prepared figures 1-5. Helms J. and Levi M. revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Toshiaki Iba.

Ethics declarations

Conflict of interest

Iba T. has received a research grant from Japan Blood Products Organization and JIMRO. Helms J. has received honoraria from Diagnostica Stago, Pfizer PFE France and Sanofi Aventis France, MSD, Shionogi and Inotrem. Levi M. has received grants and participated in the advisory boards of NovoNordisk, Eli Lilly, Asahi Kasei Pharmaceuticals America, and Johnson & Johnson. Levy JH. serves on the Steering Committees for Instrumentation Laboratories, Merck, and Octapharma.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iba, T., Helms, J., Levi, M. et al. Inflammation, coagulation, and cellular injury in heat-induced shock. Inflamm. Res. 72, 463–473 (2023). https://doi.org/10.1007/s00011-022-01687-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01687-8

Keywords

Navigation