Skip to main content

Advertisement

Log in

Lipoxin alleviates oxidative stress: a state-of-the-art review

  • Review Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

This review aims to summarize the capability of lipoxin in regulating oxidative stress.

Background

Oxidative stress is defined as an imbalance between the production of free radicals and the antioxidant system, and it is associated with the existence of a large number of oxidation products, such as reactive oxygen species (ROS) and reaction nitrogen species (RNS), causing damage to human tissues through immunoinflammatory responses. Therefore, reducing oxidative stress is vital to alleviate pathological damage. Lipoxin, an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. Previous studies have shown that lipoxin is associated with a variety of biological functions, including anti-inflammatory, regulating immune responses, promoting the repair of damaged cells, etc. The deficiency of lipoxin is a critical pathological mechanism in different diseases. Moreover, the ability of lipoxin to attenuate oxidative stress is noteworthy, thereby protecting the human body from diverse diseases.

Methods

We searched papers from PubMed database using search terms, such as lipoxin, lipoxin A4, oxidative stress, and other relevant terms.

Results

A total of 103 articles published over the past 20 years were identified for inclusion. We summarized the capability of lipoxin in regulating oxidative stress and mechanism.

Conclusion

Lipoxin is provided with a protective role in attenuating oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gao Y, Zhang HW, Luo LC, et al. Resolvin D1 improves the resolution of inflammation via activating NF-κB p50/p50–mediated cyclooxygenase-2 expression in acute respiratory distress syndrome. J Immunol. 2017;199(6):2043–54.

    Article  CAS  PubMed Central  Google Scholar 

  2. Petri MH, Laguna-Fernandez A, Arnardottir H, et al. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E−/− mice. Br J Pharmacol. 2017;174(22):4043–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kong X, Wu SH, Zhang L, et al. Pilot application of lipoxin A4 analog and lipoxin A4 receptor agonist in asthmatic children with acute episodes. Exp Ther Med. 2017;14(3):2284–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim N, Lannan KL, Thatcher TH, et al. Lipoxin B4 (LXB4) enhances human memory B cell antibody production via upregulating cyclooxygenase-2 (COX2) expression. J Immunol. 2018;201(11):3343–51.

    Article  CAS  PubMed  Google Scholar 

  5. Liu XX, Wang X, Duan XR, et al. Lipoxin A4 and its analog suppress inflammation by modulating HMGB1 translocation and expression in psoriasis. Sci Rep. 2017;7:7100.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Moges R, Lamache DDD, Sajedy S, et al. Anti-inflammatory benefits of antibiotics: tylvalosin induces apoptosis of porcine neutrophils and macrophages, promotes efferocytosis, and inhibits pro-inflammatory CXCL-8, IL1α, and LTB4 production, While inducing the release of pro-resolving lipoxin A4 and resolvin D1. Front Vet Sci. 2018;5:57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu HJ, Zeng J, Huang W, et al. Colorectal cancer is associated with a deficiency of lipoxin A4, an endogenous anti-inflammatory mediator. J Cancer. 2019;10(19):4719–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doğan ESK, Doğan B, Fentoğlu Ö, et al. The role of serum lipoxin A4 levels in the association between periodontal disease and metabolic syndrome. J Periodontal Implant Sci. 2019;49(2):105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ricklefs I, Barkas I, Melody G. ALX receptor ligands define a biochemical endotype for severe asthma. JCI Insight. 2017;2(14): e93534.

    Article  PubMed Central  Google Scholar 

  10. Bäck M, Powell WS, Dahlén SE, et al. Update on leukotriene, lipoxin and oxoeicosanoid receptors: IUPHAR review 7. Br J Pharmacol. 2014;171(15):3551–74.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Planagumà A, Domenech T, Jover I, et al. Lack of activity of 15-epi-lipoxin A4 on FPR2/ALX and CysLT1 receptors in interleukin-8-driven human neutrophil function. Clin Exp Immunol. 2013;173(2):298–309.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Undurti ND. Combination of aspirin with essential fatty acids is superior to aspirin alone to prevent or ameliorate sepsis or ARDS. Lipids Health Dis. 2016;15:206.

    Article  Google Scholar 

  13. Fischer CD, Duquette SC, Renaux BS, et al. Tulathromycin exerts proresolving effects in bovine neutrophils by inhibiting phospholipases and altering leukotriene B4, prostaglandin E2, and lipoxin A4 production. Antimicrob Agents Chemother. 2014;58(8):4298–307.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sack MN, Fyhrquist FY, Saijonmaa OJ, et al. Basic biology of oxidative stress and the cardiovascular system: part 1 of 3-part series. J Am Coll Cardiol. 2017;70(2):196–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu L, Gan XG, Liu XK, et al. Calcium oxalate crystals induces tight junction disruption in distal renal tubular epithelial cells by activating ROS/Akt/p38 MAPK signaling pathway. Ren Fail. 2017;39(1):440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang MX, Zhang HF, Zhai LJ, et al. ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway. Lipids Health Dis. 2017;16:216.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuo LM, Chen PJ, Sung PJ, et al. The bioactive extract of pinnigorgia sp. induces apoptosis of hepatic stellate cells via ROS-ERK/JNK-caspase-3 signaling. Mar Drugs. 2018;16(1):19.

    Article  PubMed Central  Google Scholar 

  18. Rawat V, Bortolussi G, Gazzin S, et al. Bilirubin-Induced oxidative stress leads to DNA damage in the cerebellum of hyperbilirubinemic neonatal mice and activates DNA double-strand break repair pathways in human cells. Oxid Med Cell Longev. 2018;2018:1801243.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cui K, Tang Z, Li CC, et al. Lipoxin A4 improves erectile dysfunction in rats with type I diabetes by inhibiting oxidative stress and corporal fibrosis. Asian J Androl. 2018;20(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  20. Chen QF, Kuang XD, Yuan QF, et al. Lipoxin A4 attenuates LPS-induced acute lung injury via activation of the ACE2-Ang-(1–7)-Mas axis. Innate Immun. 2018;24(5):285–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu L, Li HH, Wu Q, et al. Lipoxin A4 activates Nrf2 pathway and ameliorates cell damage in cultured cortical astrocytes exposed to oxygen-glucose deprivation/reperfusion insults. J Mol Neurosci. 2015;56(4):848–57.

    Article  CAS  PubMed  Google Scholar 

  22. Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73(3–4):141–62.

    Article  CAS  PubMed  Google Scholar 

  23. Serhan CN, Hamberg M. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci USA. 1984;81(17):5335–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dakin SG, Colas RA, Newton J, et al. 15-Epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with achilles tendinopathy and rupture. FASEB J. 2019;33(7):8043–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pirault J, Bäck M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front Pharmacol. 2018;9:1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang CS, Baker OJ. The G-protein–coupled receptor ALX/Fpr2 regulates adaptive immune responses in mouse submandibular glands. Am J Pathol. 2018;188(7):1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petri MH, Thul S, Andonova T, et al. Resolution of inflammation through the lipoxin and ALX/FPR2 receptor pathway protects against abdominal aortic aneurysms. JACC Basic Transl Sci. 2018;3(6):719–27.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu J, Peng L, Li J. The lipoxin A4 receptor agonist BML-111 alleviates inflammatory injury and oxidative stress in spinal cord injury. Med Sci Monit. 2020;26:e919883-1-e919883-7.

    Google Scholar 

  29. Das UN. Arachidonic acid and lipoxin A4 as possible endogenous anti-diabetic molecules. Prostaglandins Leukot Essent Fatty Acids. 2013;88(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  30. Song YQ, Yang Y, Cui Y, et al. Lipoxin A4 methyl ester reduces early brain injury by inhibition of the nuclear factor kappa B (NF-κB)-dependent matrix metallopeptidase 9 (MMP-9) pathway in a rat model of intracerebral hemorrhage. Med Sci Monit. 2019;25:1838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sham HP, Walker KH, Abdulnour R-EE, et al. 15-epi-lipoxin A4, resolvin D2 and resolvin D3 induce NF- κB regulators in bacterial pneumonia. J Immunol. 2018;200(8):2757–66.

    Article  CAS  PubMed  Google Scholar 

  32. Yang Y, Wang Y, Kong YW, et al. The effects of different frequency treadmill exercise on lipoxin A4 and articular cartilage degeneration in an experimental model of monosodium iodoacetate-induced osteoarthritis in rats. PLoS ONE. 2017;12(6):e0179162.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Silva VN, Arruda AM, Fidalgo C, et al. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: a novel antioxidative mechanism. Thromb Haemost. 2007;97(1):88–98.

    Article  Google Scholar 

  34. An YA, Zhang HF, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019;33(11):12515–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou XL, Yang QS, Ni SZ, et al. Protective effects of lipoxin A4 in testis injury following testicular torsion and detorsion in rats. Mediators Inflamm. 2014;2014: 898056.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim HJ, Park SH, Han SY, et al. LXA 4-FPR2 signaling regulates radiation-induced pulmonary fibrosis via crosstalk with TGF-β/Smad signaling. Cell Death Dis. 2020;11(8):653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dai JF, Shen JH, Das UN, et al. Effects of polyunsaturated fatty acids on the growth of gastric cancer cellsin vitro. Lipids Health Dis. 2013;12(1):71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zong L, Li JH, Chen X, et al. Lipoxin A4 attenuates cell invasion by inhibiting ROS/ERK/MMP pathway in pancreatic cancer. Oxid Med Cell Longev. 2016;2016:6815727.

    Article  PubMed  Google Scholar 

  39. Li Y, Cai L, Ye D, et al. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene. 2011;30(36):3887–99.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Yao S, Shang Y, et al. Aspirin-triggered lipoxin A4 attenuates lipopolysaccharide induced intracellular ROS in BV2 microglia cells by inhibiting the function of NADPH oxidase. Neurochem Res. 2012;37(8):1690–6.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou Y, You H, Zhang AJ, et al. Lipoxin A4 attenuates uric acid-activated, NADPH oxidase-dependent oxidative stress by interfering with translocation of p47phox in human umbilical vein endothelial cells. Exp Ther Med. 2020;20(2):1682–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loth MK, Guariglia SR, Re DB, et al. A novel interaction of translocator protein 18 kDa (TSPO) with NADPH oxidase in microglia. Mol Neurobiol. 2020;57(11):4467–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tseng HHL, Vong CT, Kwan YW, et al. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016;6:35016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ziegler CS, Bouchab L, Tramier M, et al. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase. J Biol Chem. 2019;294(11):3824–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carlo T, Kalwa H, Levy BD. 15-Epi-lipoxin A4 inhibits human neutrophil superoxide anion generation by regulating polyisoprenyl diphosphate phosphatase 1. FASEB J. 2013;27(7):2733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wenceslau CF, McCarthy CG, Szasz T, et al. Lipoxin A4 mediates aortic contraction via RHOA/RHO kinase, endothelial dysfunction and reactive oxygen species. J Vasc Res. 2014;51(6):407–17.

    Article  CAS  PubMed  Google Scholar 

  47. Gremmels H, de Jong OG, Hazenbrink DH, et al. The transcription factor Nrf2 protects angiogenic capacity of Endothelial colony-forming cells in high-oxygen radical stress conditions. Stem Cells Int. 2017;2017:4680612.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Quintanilla ME, Ezquer F, Morales P, et al. N-Acetylcysteine and acetylsalicylic acid inhibit alcohol consumption by different mechanisms: combined protection. Front Behav Neurosci. 2020;14:122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Das UN. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: a review. J Adv Res. 2018;11:43–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pang HY, Yi P, Huang YP, et al. Effect of lipoxin A4 on lipopolysaccharide induced endothelial hyperpermeability. Sci World J. 2011;11:1056–67.

    Article  CAS  Google Scholar 

  51. Borgeson E, Lonn J, Bengtsson T, et al. Lipoxin A4 inhibits porphyromonas gingivalis-induced aggregation and reactive oxygen species production by modulating neutrophil–platelet interaction and CD11b expression. Infect Immun. 2011;79(4):1489–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jozsef L, Zouki C, Filep JG, et al. LipoxinA4and aspirin-triggered 15-epi-lipoxin A4 inhibit peroxynitrite formation, NF-B and AP-1 activation, and IL-8 gene expression in human leukocytes. Proc Natl Acad Sci USA. 2002;99(20):13266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin SW, Zhang L, Ye DY, et al. Posttreatment with aspirin-triggered Lipoxin A4analog attenuates lipopolysaccharide-induced acute lung injury in mice: the role of Heme Oxygenase-1. Anesth Analg. 2007;104(2):369–77.

    Article  CAS  PubMed  Google Scholar 

  54. Wang YP, WU Y, Yao SL, et al. Aspirin-triggered lipoxin A4 attenuates LPS induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells. J Neuroinflammation. 2011;8:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Galougahi KK, Liu CC, Rasmussen HH, et al. Glutathionylation mediates angiotensin II-induced eNOS uncoupling, amplifying NADPH oxidase-dependent endothelial dysfunction. J Am Heart Assoc. 2014;3(2):e000731.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lin YZ, Tang GQ, Jiao YC, et al. Propionibacterium acnes induces intervertebral disc degeneration by promoting iNOS/NO and COX-2/PGE2 activation via the ROS-dependent NF-κB pathway. Oxid Med Cell Longev. 2018;2018:3692752.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Baltazar MT, Oliveira RJD, Carvalho F. Antioxidant properties and associated mechanisms of salicylates. Curr Med Chem. 2011;18(21):3252–64.

    Article  CAS  PubMed  Google Scholar 

  58. Morris T, Stables M, Gilroy DW, et al. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol. 2009;183(3):2089–96.

    Article  CAS  PubMed  Google Scholar 

  59. Bathina S, Das UN. PUFAs, BDNF and lipoxin A4 inhibit chemical-induced cytotoxicity of RIN5F cells in vitro and streptozotocin-induced type 2 diabetes mellitus in vivo. Lipids Health Dis. 2019;18:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pereira RS, Malvezi AD, Martins MIL, et al. Combination therapy using benznidazole and aspirin during the acute phase of experimental chagas disease prevents cardiovascular dysfunction and decreases typical cardiac lesions in the chronic phase. Antimicrob Agents Chemother. 2020;64(7):e00069-e120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malvezi AD, Panis C, Filho PP, et al. Aspirin modulates innate inflammatory response and inhibits the entry of trypanosoma cruziin mouse peritoneal macrophages. Mediators Inflamm. 2014;2014:580919.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jung SB, Kim CS, Irani K, et al. Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res. 2010;107(7):877–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Navarro-Xavier RA, Vieira K, de Barros I, de Andrade S, et al. Protective effect of soybean oil- or fish oil-rich diets on allergic airway inflammation. J Inflamm Res. 2016;9:79–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Du Q, Luo J, Yang MQ, et al. iNOS/NO is required for IRF1 activation in response to liver ischemia-reperfusion in mice. Mol Med. 2020;26:56.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brito NM, Costa HC, Simões RL, et al. Lipoxin-induced phenotypic Changes in CD115+LY6Chi monocytes TAM precursors inhibits tumor development. Front Oncol. 2019;9:540.

    Article  Google Scholar 

  66. Fahel JS, Souza MB, Gomes MTR, et al. 5-lipoxygenase negatively regulates Th1 response during Brucella abortus infection in mice. Infect Immun. 2015;83(3):1210–6.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu Y, Lin JY, Wu XX, et al. Aspirin-mediated attenuation of intervertebral disc degeneration by ameliorating reactive oxygen species in vivo and in vitro. Oxid Med Cell Longev. 2019;2019:7189854.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Undurti ND. Ageing: Is there a role for arachidonic acid and other bioactive lipids? A review. J Adv Res. 2018;11:67–79.

    Article  Google Scholar 

  69. Lee JY, Han SH, Park MH, et al. Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer’s disease. Nat Commun. 2018;9:1479.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Medeiros R, Kitazawa M, Passos GF, et al. Aspirin-triggered Lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 2013;182(5):1780–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu J, Ding DH, Li QQ, et al. Lipoxin a4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway. Front Cell Neurosci. 2019;13:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou CH, Wang SF, Yang Y, et al. Protective effects and possible mechanism of lipoxin A(4) analogue in rats with acute pancreatitis. Zhonghua Yi Xue Za Zhi. 2012;92(14):993–8.

    CAS  PubMed  Google Scholar 

  73. Colgan SP, Serhan CN, Parkos CA, et al. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J Clin Invest. 1993;92(1):75–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kebir DE, Filep GJ. Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Front Immunol. 2013;4:60.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kebir DE, József L, Pan WL, et al. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med. 2009;180(4):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bitto A, Minutoli L, David A, et al. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis. Crit Care. 2012;16(1):R32.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Almeida CS, Oliveira VA, Câmara NOS, et al. Crotoxin from crotalus durissus terrificus is able to down-modulate the acute intestinal inflammation in mice. PLoS ONE. 2015;10(4): e0121427.

    Article  PubMed Central  Google Scholar 

  78. Liu FC, Yu HP, Chou AH, et al. Corilagin reduces acetaminophen-induced hepatotoxicity through MAPK and NF-κB signaling pathway in a mouse model. Am J Transl Res. 2020;12(9):5597–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu M, Chen SB, Shang Y, et al. Aspirin-triggered lipoxin A4 attenuates lipopolysaccharide-induced acute lung injury by inhibiting activation of mitogen-activated protein kinases and NF-κB in mice. Int J Clin Exp Pathol. 2018;11(5):2570–8.

    PubMed  PubMed Central  Google Scholar 

  80. Guo ZD, Hu Q, Xu L, et al. Lipoxin A4 reduces inflammation through formyl peptide receptor 2/p38MAPK signaling pathway in subarachnoid hemorrhage rats. Stroke. 2016;47(2):490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao QH, Hu XT, Shao L, et al. LipoxinA4 attenuates myocardial ischemia reperfusion injury via a mechanism related to downregulation of GRP-78 and caspase-12 in rats. Heart Vessels. 2014;29(5):667–78.

    Article  PubMed  Google Scholar 

  82. Kakazu A, He JC, Kenchegowda S, et al. Lipoxin A4 inhibits platelet-activating factor inflammatory response and stimulates corneal wound healing of injuries that compromise the stroma. Exp Eye Res. 2012;103:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muñoz O, Mallavia B, Bins A, et al. Aspirin-triggered 15-epi-lipoxin A4 regulates neutrophil-platelet aggregation and attenuates acute lung injury in mice. Blood. 2014;124(17):2625–34.

    Article  Google Scholar 

  84. Liu ZQ, Zhang HB, Wang J, et al. Lipoxin A4 ameliorates ischemia/reperfusion induced spinal cord injury in rabbit model. Int J Clin Exp Med. 2015;8(8):12826–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao QF, Shao L, Hu XT, et al. Lipoxin A4 preconditioning and postconditioning protect myocardial ischemia/reperfusion injury in rats. Mediators Inflamm. 2013;2013: 231351.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang Q, Xu GX, Tai QH, et al. Lipoxin A4 reduces ventilator-induced lung injury in rats with large-volume mechanical ventilation. Mediators Inflamm. 2020;2020:6705985.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xin DW, Quan RF, Zeng LR, et al. Lipoxin A4 protects rat skin flaps against ischemia-reperfusion injury through inhibiting cell apoptosis and inflammatory response induced by endoplasmic reticulum stress. Ann Transl Med. 2020;8(17):1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dai JF, Shen JH, Pan WS, et al. Effects of polyunsaturated fatty acids on the growth of gastric cancer cells in vitro. Lipids Health Dis. 2013;12:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Polavarapu S, Mani AM, Gundala NV, et al. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro. PLoS ONE. 2014;9(12):e114766.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lin F, Yu X, Huang Y, et al. A synthetic analog of lipoxin A4 partially alleviates dexamethasone-induced fetal growth restriction in rats. Placenta. 2013;34(10):941–8.

    Article  CAS  PubMed  Google Scholar 

  91. Zong HY, Li XH, Lin HD, et al. Lipoxin A4 pretreatment mitigates skeletal muscle ischemia-reperfusion injury in rats. Am J Transl Res. 2017;9(3):1139–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cho RL, Yang CC, Tseng CH, et al. Haem oxygenase-1 up-regulation by rosiglitazone via ROS-dependent Nrf2-antioxidant response elements axis or PPARγ attenuates LPS-mediated lung inflammation. Br J Pharmacol. 2018;175(20):3928–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Scuto M, Mauro PD, Ontario ML, et al. Nutritional mushroom treatment in Meniere’s disease with coriolus versicolor: a rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int J Mol Sci. 2020;21(1):284.

    Article  CAS  Google Scholar 

  94. Yang FJ, Xie JM, Wang WM, et al. Regional arterial infusion with lipoxin A4 attenuates experimental severe acute pancreatitis. PLoS ONE. 2014;9(9): e108525.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Trovato A, Siracusa R, Paola RD, et al. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun Ageing. 2016;13:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen XQ, Zhou Y, Tang YR, et al. Involvement of K+ channel-dependant pathways in lipoxin A4-induced protective effects on hypoxia/reoxygenation injury of cardiomyocytes. Prostaglandins Leukot Essent Fatty Acids. 2013;88(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  97. Ismail AA, Cymer M, Rzeszotek SB, et al. Bioactive phospholipids enhance migration and adhesion of human leukemic cells by inhibiting heme oxygenase 1 (HO-1) and inducible nitric oxygenase synthase (iNOS) in a p38 MAPK-dependent manner. Stem Cell Rev. 2019;15(1):139–54.

    Article  Google Scholar 

  98. Chen X, Xi ZY, Liang HB, et al. Melatonin prevents mice cortical astrocytes from hemin-induced toxicity through activating PKCα/Nrf2/HO-1 signaling in vitro. Front Neurosci. 2019;13:760.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chen X, Liang HB, Xi ZY, et al. BM-MSC transplantation alleviates intracerebral hemorrhage-induced brain injury, promotes astrocytes vimentin expression, and enhances astrocytes antioxidation via the Cx43/Nrf2/HO-1 axis. Front Cell Dev Biol. 2020;8:302.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Han X, Yao WF, Liu ZP, et al. Lipoxin A4 preconditioning attenuates intestinal ischemia reperfusion injury through keap1/Nrf2 pathway in a lipoxin A4 receptor independent manner. Oxid Med Cell Longev. 2016;2016:9303606.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ye W, Zheng CL, Yu DL, et al. Lipoxin A4 ameliorates acute pancreatitis-associated acute lung injury through the antioxidative and anti-inflammatory effects of the Nrf2 pathway. Oxid Med Cell Longev. 2019;2019:2197017.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen XQ, Wu SH, Zhou Y, et al. Lipoxin A4-Induced heme oxygenase-1 protects cardiomyocytes against hypoxia/reoxygenation injury via p38 MAPK activation and Nrf2/ARE complex. PLoS ONE. 2013;8(6): e67120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu SH, Wang MJ, Lü J, et al. Signal transduction involved in lipoxin A4-induced protection of tubular epithelial cells against hypoxia/reoxygenation injury. Mol Med Rep. 2017;15(4):1682–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financially supported by the Research Project of Sichuan Provincial Health Planning Commission (Grant No. 17PJ067), Science and Technology Plan Project of Gansu (Grant No. 18YF1FA108), National Natural Science Foundation of China (Grant No. 81560343), and Lanzhou University Second Hospital Cuiying Fund Project (Grant No. CY2018-MS10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Ge You.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., You, CG. Lipoxin alleviates oxidative stress: a state-of-the-art review. Inflamm. Res. 71, 1169–1179 (2022). https://doi.org/10.1007/s00011-022-01621-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01621-y

Keywords

Navigation