Skip to main content
Log in

The HMGB1-RAGE axis induces apoptosis in acute respiratory distress syndrome through PERK/eIF2α/ATF4-mediated endoplasmic reticulum stress

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Apoptosis plays a major role in the progression of acute respiratory distress syndrome (ARDS) that may involve the interaction of the high mobility group box 1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). However, the underlying mechanism remains unclear. Thus, we aimed to explore the mechanisms of HMGB1-RAGE axis-induced apoptosis in ARDS.

Methods

Blood samples from ARDS patients and healthy volunteers were collected to investigate the correlation between serum HMGB1 levels and the severity of ARDS in patients. Mouse models of ARDS induced by caecal ligation and perforation and A549 cell models established by stimulation with recombinant human HMGB1 (rHMGB1) were designed to explore lung inflammatory injury and apoptosis.

Results

Serum HMGB1 levels were significantly increased in ARDS patients compared to controls, and HMGB1 levels in the Severe group and Nonsurvival group were significantly higher than those in the Mild and Moderate group and Survival group. In vivo, compared to sham mice, ARDS mice showed significant lung inflammatory injury and apoptosis as well as upregulation of HMGB1 and RAGE and endoplasmic reticulum stress (ERs) protein expression. All injury was attenuated by treatment with an HMGB1 inhibitor GA, a RAGE blocker FPS-ZM1, and an ERs inhibitor 4-PBA. In vitro, A549 cells challenged with rHMGB1 exhibited significant increases in the levels of proteins in the RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2alpha (eIF2α)/activating transcription factor 4 (ATF4) pathway and in apoptosis, all of which were significantly inhibited by pre-treatment with lenti-shPERK and an anti-RAGE antibody.

Conclusion

The HMGB1-RAGE axis induces apoptotic injury during ARDS, possibly through PERK/eIF2α/ATF4-mediated ERs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ARDS:

Acute respiratory distress syndrome

ATF4:

Activating transcription factor 4

Bip:

Binding immunoglobulin protein

BALF:

Bronchoalveolar lavage fluid

CHOP:

C/EBP homologous protein

CLP:

Caecal ligation and puncture

eIF2α:

Eukaryotic translation-initiation factor 2α

GA:

Glycyrrhizic acid

HMGB1:

High mobility group protein

IRE1α:

Inositol-requiring enzyme 1α

IL-6:

Interleukin 6

IL-1β:

Interleukin 1β

PERK:

Protein kinase R-like ER kinase

4-PBA:

4-Phenylbutyricacid

RAGE:

Receptor for advanced glycation end-products

rHMGB1:

Recombinant high mobility group protein

TNF-α:

Tumour necrosis factor-α

References

  1. Sweeney RM, McAuley DF. Acute respiratory distress syndrome. Lancet. 2016;388:2416–30. https://doi.org/10.1016/S0140-6736(16)00578-X.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5:18. https://doi.org/10.1038/s41572-019-0069-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huppert LA, Matthay MA, Ware LB. Pathogenesis of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2019;40:31–9. https://doi.org/10.1055/s-0039-1683996.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peter JV, John P, Graham PL, Moran JL, George IA, Bersten A. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336:1006–9. https://doi.org/10.1136/bmj.39537.939039.BE.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iwata K, Doi A, Ohji G, Oka H, Oba Y, Takimoto K, et al. Effect of neutrophil elastase inhibitor (sivelestat sodium) in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): a systematic review and meta-analysis. Intern Med. 2010;49:2423–32. https://doi.org/10.2169/internalmedicine.49.4010.

    Article  PubMed  Google Scholar 

  6. Paine R 3rd, Standiford TJ, Dechert RE, Moss M, Martin GS, Rosenberg AL, et al. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med. 2012;40:90–7. https://doi.org/10.1097/CCM.0b013e31822d7bf0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gouda MM, Shaikh SB, Bhandary YP. Inflammatory and fibrinolytic system in acute respiratory distress syndrome. Lung. 2018;196:609–16. https://doi.org/10.1007/s00408-018-0150-6.

    Article  CAS  PubMed  Google Scholar 

  8. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–4. https://doi.org/10.1038/nri1594.

    Article  CAS  PubMed  Google Scholar 

  9. Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 2008;229:3716–27. https://doi.org/10.1096/fj.08-109033.

    Article  CAS  Google Scholar 

  10. Katsuoka F, Kawakami Y, Arai T, Imuta H, Fujiwara M, Kanma H, et al. Type II alveolar epithelial cells in lung express receptor for advanced glycation end products (RAGE) gene. Biochem Biophys Res Commun. 1997;238:512–6. https://doi.org/10.1006/bbrc.1997.7263.

    Article  CAS  PubMed  Google Scholar 

  11. Weber DJ, Allette YM, Wilkes DS, White FA. The HMGB1-RAGE inflammatory pathway: implications for brain injury-induced pulmonary dysfunction. Antioxid Redox Signal. 2015;23:1316–28. https://doi.org/10.1089/ars.2015.6299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang G, Liu L, Zhang Y, Han D, Liu J, Xu J, et al. Activation of PPARγ attenuates LPS-induced acute lung injury by inhibition of HMGB1-RAGE levels. Eur J Pharmacol. 2014;726:27–32. https://doi.org/10.1016/j.ejphar.2014.01.030.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou H, Wang X, Zhang B. Depression of lncRNA NEAT1 antagonizes LPS-Evoked acute injury and inflammatory response in alveolar epithelial cells via HMGB1-RAGE signalling. Mediators Inflamm. 2020;2020:8019467. https://doi.org/10.1155/2020/8019467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaufman RJ. Stress signalling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13:1211–33. https://doi.org/10.1101/gad.13.10.1211.

    Article  CAS  PubMed  Google Scholar 

  15. Bettigole SE, Glimcher LH. Endoplasmic reticulum stress in immunity. Annu Rev Immunol. 2015;33:107–38. https://doi.org/10.1146/annurev-immunol-032414-112116.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454:455–62. https://doi.org/10.1038/nature07203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan X, Wang J, Li Y, He X, Niu B, Wu D, et al. Allergy immunotherapy restores airway epithelial barrier dysfunction through suppressing IL-25 -induced endoplasmic reticulum stress in asthma. Sci Rep. 2018;8:7950. https://doi.org/10.1038/s41598-018-26221-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu YH, Wang Y, Bai Y, Liu M, Wang HL. Endoplasmic reticulum stress and apoptosis via PERK-eIF2α-CHOP signalling in the methamphetamine-induced chronic pulmonary injury. Environ Toxicol Pharmacol. 2017;49:194–201. https://doi.org/10.1016/j.etap.2017.01.003.

    Article  CAS  PubMed  Google Scholar 

  19. Huang Q, Yang Z, Zhou JP, Luo Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Mol Cell Biochem. 2017;431:67–74. https://doi.org/10.1007/s11010-017-2976-2.

    Article  CAS  PubMed  Google Scholar 

  20. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, ARDS Definition Task Force, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  CAS  PubMed  Google Scholar 

  21. Qiang X, Yang WL, Wu R, Zhou M, Jacob A, Dong W, et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med. 2013;19:1489–95. https://doi.org/10.1038/nm.3368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Zhang W, Zhang L, Zhang J, Chen X, Yang M, et al. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice. J Radiat Res. 2017;58:41–7. https://doi.org/10.1093/jrr/rrw091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee H, Park JR, Kim WJ, Sundar IK, Rahman I, Park SM, et al. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FAaSEB J. 2017;31:2076–89. https://doi.org/10.1096/fj.201601155R.

    Article  CAS  Google Scholar 

  24. Lee HY, Marahatta A, Bhandary B, Kim HR, Chae HJ. 4-Phenylbutyric acid regulates CCl4-induced acute hepatic dyslipidemia in a mouse model: a mechanism-based PK/PD study. Eur J Pharmacol. 2016;777:104–12. https://doi.org/10.1016/j.ejphar.2016.02.068.

    Article  CAS  PubMed  Google Scholar 

  25. He F, Wang J, Liu Y, Wang X, Cai N, Wu C, et al. Xuebijing injection induces anti-inflammatory-like effects and downregulates the expression of TLR4 and NF-κB in lung injury caused by dichlorvos poisoning. Biomed Pharmacother. 2018;106:1404–11. https://doi.org/10.1016/j.biopha.2018.07.111.

    Article  PubMed  Google Scholar 

  26. Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, et al. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44:725–38. https://doi.org/10.1165/rcmb.2009-0210ST.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo Y, Li SJ, Yang J, Qiu YZ, Chen FP. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem Biophys Res Commun. 2013;438:732–8. https://doi.org/10.1016/j.bbrc.2013.07.098.

    Article  CAS  PubMed  Google Scholar 

  28. He B, Zhou W, Rui Y, Liu L, Chen B, Su X. MicroRNA-574-5p attenuates acute respiratory distress syndrome by targeting HMGB1. Am J Respir Cell Mol Biol. 2021;64:196–207. https://doi.org/10.1165/rcmb.2020-0112OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu J, Lin SH, Wang CJ, Li SY, Feng XY, Liu Q, et al. HMGB1 regulates IL-33 expression in acute respiratory distress syndrome. Int Immunopharmacol. 2016;38:267–74. https://doi.org/10.1016/j.intimp.2016.06.010.

    Article  CAS  PubMed  Google Scholar 

  30. Tseng CC, Fang WF, Leung SY, Chen HC, Chang YC, Wang CC, et al. Impact of serum biomarkers and clinical factors on intensive care unit mortality and 6-month outcome in relatively healthy patients with severe pneumonia and acute respiratory distress syndrome. Dis Markers. 2014;2014: 804654. https://doi.org/10.1155/2014/804654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62. https://doi.org/10.1146/annurev-immunol-030409-101323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010;28:367–88. https://doi.org/10.1146/annurev.immunol.021908.132603.

    Article  CAS  PubMed  Google Scholar 

  33. Guillot L, Nathan N, Tabary O, Thouvenin G, Le Rouzic P, Corvol H, et al. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol. 2013;45:2568–73. https://doi.org/10.1016/j.biocel.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  34. Osorio F, Lambrecht B, Janssens S. The UPR and lung disease. Semin Immunopathol. 2013;35:293–306. https://doi.org/10.1007/s00281-013-0368-6.

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Wang Y, Xie X, Chen H, Zhu Q, Ge Z, et al. Heme oxygenase-1 reduces sepsis-induced endoplasmic reticulum stress and acute lung injury. Mediators Inflamm. 2018;2018:9413876. https://doi.org/10.1155/2018/9413876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song MJ, Davis CI, Lawrence GG, Margulies SS. Local influence of cell viability on stretch-induced permeability of alveolar epithelial cell monolayers. Cell Mol Bioeng. 2016;9:65–72. https://doi.org/10.1007/s12195-015-0405-8.

    Article  CAS  PubMed  Google Scholar 

  37. Li PC, Wang BR, Li CC, Lu X, Qian WS, Li YJ, et al. Seawater inhalation induces acute lung injury via ROS generation and the endoplasmic reticulum stress pathway. Int J Mol Med. 2018;41:2505–16. https://doi.org/10.3892/ijmm.2018.3486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu W, Liu K, Zhang S, Shan L, Tang J. Tetramethylpyrazine showed therapeutic effects on sepsis-induced acute lung injury in rats by inhibiting endoplasmic reticulum stress protein kinase RNA-Like Endoplasmic Reticulum Kinase (PERK) signalling-induced apoptosis of pulmonary microvascular endothelial cells. Med Sci Monit. 2018;24:1225–31. https://doi.org/10.12659/msm.908616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Nanjing Medical Science and technique Development Foundation (QRX17124). We would like to thank Mr. Xiangeng He and Ms. Xiaoshun Fang for giving us so much encouragement and support during this research period.

Author information

Authors and Affiliations

Authors

Contributions

CW and FH contributed to the conception and design of the study; NG, NC, JN, YL and FH performed research; NG, NC, JN and FH performed analysis and interpretation of data; YL, QZ and Fei He contributed to drafting the article or revising it critically for important intellectual content; all authors approve the final version to be submitted.

Corresponding authors

Correspondence to Fei He or Chao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The clinical investigation in this study was approved by the Ethics Committee of Nanjing Drum Tower Hospital (EC 2020-089). All procedures for animal in this study were approved by the Institutional Animal Care and Use Committee at Nanjing Drum Tower Hospital, Nanjing University Medical School and conducted in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (NIH, Publication No. 86-23, revised 1996).

Additional information

Responsible Editor: Anatolii Kubyshkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fei He, Lina Gu and Nan Cai contributed equally to this work.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Gu, L., Cai, N. et al. The HMGB1-RAGE axis induces apoptosis in acute respiratory distress syndrome through PERK/eIF2α/ATF4-mediated endoplasmic reticulum stress. Inflamm. Res. 71, 1245–1260 (2022). https://doi.org/10.1007/s00011-022-01613-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01613-y

Keywords

Navigation