Skip to main content

Advertisement

Log in

Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Microglia stimulated by oxygen glucose deprivation (OGD) were treated with quercetin to investigate the effect on oxidative stress and the inflammatory response and to explore whether toll-like receptor 4 (TLR4) signaling was involved. In addition, the effect of quercetin on the neurological functions of neonatal mice with hypoxic-ischemic brain injury (HIBI) was examined.

Materials and subjects

Mouse BV2 microglial cells and postnatal day 7 neonatal mice were used.

Treatment

A predetermined concentration of quercetin was used in cell experiments. Quercetin was injected i.p. (50 mg/kg) at three time points after HI insult: 0, 24, and 48 h.

Methods

Cell viability assay, Western blotting, qRT-RCR, ELISA, HIBI model construction and behavioral tests.

Results

This study first showed that quercetin protected BV2 cells from OGD-induced damage and reversed the changes in microglial oxidative stress-related molecules. Second, quercetin inhibited OGD-induced expression of inflammatory factors in BV2 cells and suppressed TLR4/MyD88/NF-κB signaling. Finally, quercetin was disclosed to be effective in mitigating cerebral infarct volume and cognitive and motor function deficits in HIBI mice.

Conclusion

These results suggest that the neuroprotective effect of quercetin in HIBI mice is partially due to the inhibition of oxidative stress and TLR4-mediated inflammatory responses in activated microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yildiz EP, Ekici B, Tatli B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother. 2017;17:449–59.

    Article  CAS  PubMed  Google Scholar 

  2. Finder M, Boylan GB, Twomey D, Ahearne C, Murray DM, Hallberg B. Two-year neurodevelopmental outcomes after mild hypoxic ischemic encephalopathy in the era of therapeutic hypothermia. JAMA Pediatr. 2020;174(1):48–55.

    Article  PubMed  Google Scholar 

  3. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. New Engl J Med. 2014;371:140–9.

    Article  CAS  PubMed  Google Scholar 

  4. Torres-Cuevas I, Corral-Debrinski M, Gressens P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radical Biol Med. 2019;142:3–15.

    Article  CAS  Google Scholar 

  5. Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol. 2017;159:50–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Le K, Wu S, Chibaatar E, Ali AI, Guo Y. Alarmin HMGB1 plays a detrimental role in hippocampal dysfunction caused by hypoxia-ischemia insult in neonatal mice: evidence from the application of the HMGB1 inhibitor glycyrrhizin. ACS Chem Neurosci. 2020;11:979–93.

    Article  CAS  PubMed  Google Scholar 

  7. Le K, Chibaatar Daliv E, Wu S, Qian F, Ali AI, Yu D, et al. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: a possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol. 2019;75:105779.

    Article  CAS  PubMed  Google Scholar 

  8. Umekawa T, Osman AM, Han W, Ikeda T, Blomgren K. Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia. 2015;63:2220–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thornton C, Baburamani AA, Kichev A, Hagberg H. Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochem Soc Trans. 2017;45:1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li C, Bian Y, Feng Y, Tang F, Wang L, Hoi MPM, et al. Neuroprotective effects of BHDPC, a novel neuroprotectant, on experimental stroke by modulating microglia polarization. ACS Chem Neurosci. 2019;10:2434–49.

    Article  CAS  PubMed  Google Scholar 

  11. Velagapudi R, Jamshaid F, Lepiarz I, Katola FO, Hemming K, Olajide OA. The tiliroside derivative, 3-O-[(E)-(2-oxo-4-(p-tolyl) but-3-en-1-yl] kaempferol produced inhibition of neuroinflammation and activation of AMPK and Nrf2/HO-1 pathways in BV-2 microglia. Int Immunopharmacol. 2019;77:105951.

    Article  CAS  PubMed  Google Scholar 

  12. Zalewska T, Jaworska J, Ziemka-Nalecz M. Current and experimental pharmacological approaches in neonatal hypoxic- ischemic encephalopathy. Curr Pharm Des. 2015;21:1433–9.

    Article  CAS  PubMed  Google Scholar 

  13. de Boer VC, Dihal AA, van der Woude H, Arts IC, Wolffram S, Alink GM, et al. Tissue distribution of quercetin in rats and pigs. J Nutr. 2005;135:1718–25.

    Article  PubMed  Google Scholar 

  14. da Silveira de Mattos B, Soares MSP, Spohr L, Pedra NS, Teixeira FC, de Souza AA, et al. Quercetin prevents alterations of behavioral parameters, delta-aminolevulinic dehydratase activity and oxidative damage in brain of rats in a prenatal model of autism. Int J Dev Neurosci. 2020;80(4):287–302.

    Article  CAS  Google Scholar 

  15. Chakraborty J, Singh R, Dutta D, Naskar A, Rajamma U, Mohanakumar KP. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s disease. CNS Neurosci Ther. 2014;20:10–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lee JK, Kwak HJ, Piao MS, Jang JW, Kim SH, Kim HS. Quercetin reduces the elevated matrix metalloproteinases-9 level and improves functional outcome after cerebral focal ischemia in rats. Acta Neurochir. 2011;153:1321–9 (discussion 1329).

    Article  PubMed  Google Scholar 

  17. Qu X, Qi D, Dong F, Wang B, Guo R, Luo M, et al. Quercetin improves hypoxia-ischemia induced cognitive deficits via promoting remyelination in neonatal rat. Brain Res. 2014;1553:31–40.

    Article  CAS  PubMed  Google Scholar 

  18. Wu M, Liu F, Guo Q. Quercetin attenuates hypoxia-ischemia induced brain injury in neonatal rats by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol. 2019;74:105704.

    Article  CAS  PubMed  Google Scholar 

  19. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. P Natl Acad Sci USA. 2003;100:8514–9.

    Article  CAS  Google Scholar 

  20. National Research Council Committee for the Update of the Guide for the C, Use of Laboratory A. The National Academies Collection: Reports funded by National Institutes of Health. In: th, editor. Guide for the Care and Use of Laboratory Animals. Washington (DC): National Academies Press (US)National Academy of Sciences., 2011.

  21. Yao D, Zhang WR, He X, Wang JH, Jiang KW, Zhao ZY. Establishment and identification of a hypoxia-ischemia brain damage model in neonatal rats. Biomed Rep. 2016;4:437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sun HS, Xu B, Chen W, Xiao A, Turlova E, Alibraham A, et al. Neuronal K(ATP) channels mediate hypoxic preconditioning and reduce subsequent neonatal hypoxic-ischemic brain injury. Exp Neurol. 2015;263:161–71.

    Article  CAS  PubMed  Google Scholar 

  23. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci. 2019;30:555–72.

    Article  PubMed  Google Scholar 

  25. Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, et al. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res. 2011;36:1360–71.

    Article  CAS  PubMed  Google Scholar 

  26. Ozsurekci Y, Aykac K. Oxidative stress related diseases in Newborns. Oxid Med Cell Longev. 2016;2016:2768365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Panfoli I, Candiano G, Malova M, De Angelis L, Cardiello V, Buonocore G, et al. Oxidative stress as a primary risk factor for brain damage in preterm Newborns. Front Pediatrics. 2018;6:369.

    Article  Google Scholar 

  28. Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S, Kannan RM. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics. 2018;8:5529–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim KI, Chung YC, Jin BK. Norfluoxetine prevents degeneration of dopamine neurons by inhibiting microglia-derived oxidative stress in an MPTP mouse model of Parkinson’s disease. Mediators Inflamm. 2018;2018:4591289.

    PubMed  PubMed Central  Google Scholar 

  30. Xu X, Zhang L, Ye X, Hao Q, Zhang T, Cui G, et al. Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm Res. 2018;67:57–655.

    Article  CAS  PubMed  Google Scholar 

  31. Mallard C, Davidson JO, Tan S, Green CR, Bennet L, Robertson NJ, et al. Astrocytes and microglia in acute cerebral injury underlying cerebral palsy associated with preterm birth. Pediatr Res. 2014;75:234–40.

    Article  CAS  PubMed  Google Scholar 

  32. Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9:429–39.

    Article  CAS  PubMed  Google Scholar 

  33. Mrvova N, Skandik M, Kuniakova M, Rackova L. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem Int. 2015;90:246–54.

    Article  CAS  PubMed  Google Scholar 

  34. Kang CH, Choi YH, Moon SK, Kim WJ, Kim GY. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int Immunopharmacol. 2013;17:808–13.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang P, Cheng G, Chen L, Zhou W, Sun J. Cerebral hypoxia-ischemia increases Toll-like receptor 2 and 4 expression in the hippocampus of neonatal rats. Brain Develop. 2015;37:747–52.

    Article  CAS  Google Scholar 

  36. Tang Z, Cheng SW, Sun YY, Zhang YQ, Xiang XY, Ouyang ZC, et al. Early TLR4 inhibition reduces hippocampal injury at puberty in a rat model of neonatal hypoxic-ischemic brain damage via regulation of neuroimmunity and synaptic plasticity. Exp Neurol. 2019;321:113039.

    Article  CAS  PubMed  Google Scholar 

  37. Buchanan MM, Hutchinson M, Watkins LR, Yin H. Toll-like receptor 4 in CNS pathologies. J Neurochem. 2010;114:13–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia W, Luo P, Hua P, Ding P, Li C, Xu J, et al. Discovery of a new pterocarpan-type antineuroinflammatory compound from Sophora tonkinensis through suppression of the TLR4/NFkappaB/MAPK signaling pathway with PU.1 as a potential target. ACS Chem Neurosci. 2019;10:295–303.

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Northcutt AL, Cochran TA, Zhang X, Fabisiak TJ, Haas ME, et al. Methamphetamine activates Toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell. ACS Chem Neurosci. 2019;10:3622–34.

    Article  CAS  PubMed  Google Scholar 

  40. Trotta T, Porro C, Calvello R, Panaro MA. Biological role of Toll-like receptor-4 in the brain. J Neuroimmunol. 2014;268:1–12.

    Article  CAS  PubMed  Google Scholar 

  41. Hakimizadeh E, Kazemi Arababadi M, Shamsizadeh A, Roohbakhsh A, Allahtavakoli M. The possible role of Toll-like receptor 4 in the pathology of stroke. NeuroImmunoModulation. 2016;23:131–6.

    Article  CAS  PubMed  Google Scholar 

  42. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun. 2007;353:509–14.

    Article  CAS  PubMed  Google Scholar 

  43. Wang D, Zhao J, Li S, Shen G, Hu S. Quercetin attenuates domoic acid-induced cognitive deficits in mice. Nutr Neurosci. 2018;21:123–31.

    Article  CAS  PubMed  Google Scholar 

  44. Li YL, Guo H, Zhao YQ, Li AF, Ren YQ, Zhang JW. Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid beta-peptide treatment. Mol Med Reports. 2017;16:1573–7.

    Article  CAS  Google Scholar 

  45. Paula PC, Angelica Maria SG, Luis CH, Gloria Patricia CG. preventive effect of quercetin in a triple transgenic Alzheimer’s disease Mice Model. Molecules (Basel, Switzerland). 2019;24:2287.

    Article  CAS  Google Scholar 

  46. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-κB. J Immunol. 2004;172:2522–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NO. 81760203).

Author information

Authors and Affiliations

Authors

Contributions

ZL and ZF participated in the whole design of this study; KL, ZS, JD, and XP conducted the experiments; KL and XP analyzed the data; KL and ZS wrote original draft; JZ, LW, LZ, HB edited and revised the whole manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Zhengyu Liao or Zhen Feng.

Ethics declarations

Conflict of interest

No potential competing interests was declared by the authors.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, K., Song, Z., Deng, J. et al. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm. Res. 69, 1201–1213 (2020). https://doi.org/10.1007/s00011-020-01402-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01402-5

Keywords

Navigation