Skip to main content

Advertisement

Log in

Immunoexpression of canonical Wnt and NF-κB signaling pathways in the temporomandibular joint of arthritic rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To investigate the participation of canonical Wnt and NF-κB signaling pathways in an experimental model of chronic arthritis induced by methylated bovine serum albumin (mBSA) in rat temporomandibular joint (TMJ).

Materials and methods

Wistar rats were sensitized by mBSA+Complete Freund Adjuvant (CFA)/Incomplete Freund Adjuvant (IFA) on the first 14 days (1 ×/week). Subsequently, they received 1, 2 or 3 mBSA or saline solution injections into the TMJ (1 ×/week). Hypernociceptive threshold was assessed during the whole experimental period. 24 h after the mBSA injections, the TMJs were removed for histopathological and immunohistochemical analyses for TNF-α, IL-1β, NF-κB, RANKL, Wnt-10b, β-catenin and DKK1.

Results

The nociceptive threshold was significantly reduced after mBSA injections. An inflammatory infiltrate and thickening of the synovial membrane were observed only after mBSA booster injections. Immunolabeling of TNF-α, IL-1β and Wnt-10b was increased in the synovial membrane in arthritic groups. The immunoexpression of nuclear β-catenin was significantly higher only in the group that received 2 booster TMJ injections. However, NF-κB, RANKL and DKK1 immunoexpression were increased only in animals with 3 mBSA intra-articular injections.

Conclusion

Our results suggest that canonical Wnt and NF-κB signaling pathways participate in the hypernociception and inflammatory response in TMJ synovial membrane during the development of rheumatoid arthritis in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cunha CO, Pinto LMS, Mendonça LM, Saldanha ADD, Conti ACCF, Conti PCR. Bilateral asymptomatic fibrous-ankylosis of the temporomandibular joint associated with rheumatoid arthritis: a case report. Braz Dent J. 2012;23:77982. https://doi.org/10.1590/s0103-64402012000600025.

    Article  Google Scholar 

  2. Sodhi A, Naik S, Pai A, Anuradha A. Rheumatoid arthritis affecting temporomandibular joint. Contemp Clin Dent. 2015;6:124–7. https://doi.org/10.4103/0976-237X.149308.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gabriel SE, Michaud K. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases. Arthritis Res Ther. 2009;11:229. https://doi.org/10.1186/ar2669.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miao CG, Yang YY, He X, Li XF, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling. Cell Signal. 2013;25:2069–78. https://doi.org/10.1016/j.cellsig.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  5. Ruparelia PB, Shah DS, Ruparelia K, Sutaria SP, Pathak D. Bilateral TMJ involvement in rheumatoid arthritis. Case Rep Dent. 2014;2014:262430. https://doi.org/10.1155/2014/262430.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahmed N, Catrina AI, Alyamani AO, Mustafa H, Alstergren P. Deficient cytokine control modulates temporomandibular joint pain in rheumatoid arthritis. Eur J Oral Sci. 2015;123:235–41. https://doi.org/10.1111/eos.12193.

    Article  CAS  PubMed  Google Scholar 

  7. Ke J, Long X, Liu Y, Zhang YF, Li J, Fang W, Meng QG. Role of NF-κB, in TNF-α induced COX-2 expression in synovial fibroblasts from human TMJ. J Dent Res. 2007;86:363–7. https://doi.org/10.1177/154405910708600412.

    Article  CAS  PubMed  Google Scholar 

  8. Quinteiro MS, Napimoga MH, Macedo CG, Freitas FF, Abdalla HB, Bonfante R, Trindade-Clemente Napimoga J. 15-deoxy-Δ12,14-prostaglandin J2 reduces albumin-induced arthritis in temporomandibular joint of rats. Eur J Pharmacol. 2014;740:58–65. https://doi.org/10.1016/j.ejphar.2014.07.002.

    Article  CAS  Google Scholar 

  9. Chandrupatla DMSH, Weijers K, Gent YYJ, Greeuw I, Lammertsma AA, Jansen G, Laken CJ, Molthoff CFM. Sustained macrophage infiltration upon multiple intra-articular injections: an improved rat model of rheumatoid arthritis for PET guided therapy evaluation. Biomed Res Int. 2015;2015:509295. https://doi.org/10.1155/2015/509295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bonfante R, Napimoga MH, Macedo CG, Abdalla HB, Pieroni V, Clemente Napimoga JT. The P2X7 receptor, cathepsin S and fractalkine in the trigeminal subnucleus caudalis signal persistent hypernociception in temporomandibular rat joints. Neuroscience. 2018;391:120–30. https://doi.org/10.1016/j.neuroscience.2018.09.005.

    Article  CAS  PubMed  Google Scholar 

  11. Elsaid KA, Jay GD, Chichester CO. Reduced expression and proteolytic susceptibility of lubricin/superficial zone protein may explain early elevation in the coefficient of friction in the joints of rats with antigen-induced arthritis. Arthritis Rheum. 2007;56:108–16. https://doi.org/10.1002/art.22321.

    Article  PubMed  Google Scholar 

  12. Imai K, Morikawa M, D’Armiento J, Matsumoto H, Komiya K, Okada Y. Differential expression of WNTs and FRPs in the synovium of rheumatoid arthritis and osteoarthritis. Biochem Biophys Res Commun. 2006;345:1615–20. https://doi.org/10.1016/j.bbrc.2006.05.075.

    Article  CAS  PubMed  Google Scholar 

  13. Gatica-Andrades M, Vagenas D, Kling J, Nguyen TTK, Benham H, Thomas R, Körner H, Venkatesh B, Cohen J, Blumenthal A. WNT ligands contribute to the immune response during septic shock and amplify endotoxemia-driven inflammation in mice. Blood Adv. 2017;1:1274–86. https://doi.org/10.1182/bloodadvances.2017006163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Humphries AC, Mlodzik M. From instruction to output: Wnt/PCP signalling in development and cancer. Curr Opin Cell Biol. 2017;51:110–6. https://doi.org/10.1016/j.ceb.2017.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sen M. Wnt signaling in rheumatoid arthritis. Rheumatology. 2005;44:708–13. https://doi.org/10.1093/rheumatology/keh553.

    Article  CAS  PubMed  Google Scholar 

  16. Liu YR, Yan X, Yu HX, Yao Y, Wang JQ, Li XF, Chen RN, Xu QQ, Ma TT, Huang C, Li J. NLRC5 promotes cell proliferation via regulating the NF-κB signaling pathway in rheumatoid arthritis. Mol Immunol. 2017;91:24–34. https://doi.org/10.1016/j.molimm.2017.08.024.

    Article  CAS  PubMed  Google Scholar 

  17. Xia ZB, Meng FR, Fang YX, Wu X, Zhang CW, Liu Y, Liu D, Li GQ, Feng FB, Qiu HY. Inhibition of NF-κB signaling pathway induces apoptosis and suppresses proliferation and angiogenesis of human fibroblast-like synovial cells in rheumatoid arthritis. Medicine. 2018;97:e10920. https://doi.org/10.1097/md.0000000000010920.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rigoglou S, Papavassiliou AG. The NF-κB signaling pathway in osteoarthritis. Int J Biochem Cell Biol. 2013;45:2580–4. https://doi.org/10.1016/j.biocel.2013.08.018.

    Article  CAS  PubMed  Google Scholar 

  19. Chandrakesan P, Jakkula LU, Ahmed I, Roy B, Anant S, Umar S. Differential effects of β-catenin and NF-κB interplay in the regulation of cell proliferation, inflammation and tumorigenesis in response to bacterial infection. PloS One. 2013;8:e79432. https://doi.org/10.1371/journal.pone.0079432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lora VRMM, Clemente-Napimoga JT, Abdalla HB, Macedo CG, Canales GT, Barbosa CMR. Botulinum toxin type A reduces inflammatory hypernociception induced by arthritis in the temporomandibular joint of rats. Toxicon. 2017;129:52–7. https://doi.org/10.1016/j.toxicon.2017.02.010.

    Article  CAS  PubMed  Google Scholar 

  21. Gondim DV, Costa JL, Rocha SS, Brito GA, Ribeiro RA, Vale ML. Antinociceptive and anti-inflammatory effects of electroacupuncture on experimental arthritis of the rat temporomandibular joint. Can J Physiol Pharmacol. 2012;90:395–405. https://doi.org/10.1139/y2012-003.

    Article  CAS  PubMed  Google Scholar 

  22. Chaves HV, do Val DR, Ribeiro KA, Lemos JC, Souza RB, Gomes FIF, da Cunha RMS, de Paulo Teixeira Pinto V, Filho GC, de Souza MHLP, Bezerra MM, de Castro Brito GA. Heme oxygenase-1/biliverdin/carbon monoxide pathway downregulates hypernociception in rats by a mechanism dependent on cGMP/ATP-sensitive K+ channels. Inflamm Res. 2018;67:407–22. https://doi.org/10.1007/s00011-018-1133-z.

    Article  CAS  PubMed  Google Scholar 

  23. Liu YD, Liao LF, Zhang HY, Lu L, Jiao K, Zhang M, Wang MQ. Reducing dietary loading decreases mouse temporomandibular joint degradation induced by anterior crossbite prosthesis. Osteoarthritis Cartilage. 2014;22:302–12. https://doi.org/10.1016/j.joca.2013.11.014.

    Article  PubMed  Google Scholar 

  24. Oliveira MC, Tavares LP, Vago JP, Batista NT, Queiroz-Junior CM, Vieira AT, Ferreira AVM. Tumor Necrosis Factor, but not neutrophils, alters the metabolic profile in acute experimental arthritis. Plos One. 2016;11:e0146403. https://doi.org/10.1371/journal.pone.0146403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farinon M, Lora PS, Francescato LN, Bassani VL, Henriques AT, Xavier RM, De Oliveira PG. Effect of Aqueous Extract of Giant Horsetail (Equisetum giganteum L.) in Antigen-Induced Arthritis. Open Rheumatol J. 2013;7:129–33. https://doi.org/10.2174/1874312901307010129.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Westacott CI, Witcher JT, Barnes IC, Thompson D, Swan AJ, Dieppe PA. Synovial fluid concentration of five different cytokines in rheumatic diseases. Ann Rheum Dis. 1990;49:676–81. https://doi.org/10.1136/ard.49.9.676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farahat MN, Yanni G, Poston R, Panayi GS. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis. 1993;52:870–5. https://doi.org/10.1136/ard.52.12.870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Towle CE, Hung HH, Bonassar LJ, Treadwell BV. Detection of interleukin-1 in the cartilage of patients with osteoarthritis: a possible autocrine/paracrine role in pathogenesis. Osteoarthritis Cartilage. 1997;5:293–300. https://doi.org/10.1016/s1063-4584(97)80008-8.

    Article  CAS  PubMed  Google Scholar 

  29. Fassio A, Adami G, Gatti D, Orsolini G, Giollo A, Idolazzi L, Benini C, Vantaggiato E, Rossini M, Viapiana O. Inhibition of tumor necrosis factor-alpha (TNF-alpha) in patients with early rheumatoid arthritis results in acute changes of bone modulators. Int Immunopharmacol. 2019;67:487–9. https://doi.org/10.1016/j.intimp.2018.12.050.

    Article  CAS  PubMed  Google Scholar 

  30. Raychaudhuri SP, Raychaudhuri SK. Biologics: target-specific treatment of systemic and cutaneous autoimmune diseases. Indian J Dermatol. 2009;54:100–9. https://doi.org/10.4103/0019-5154.53175.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gertel S, Mahagna H, Karmon G, Watad A, Amital H. Tofacitinib attenuates arthritis manifestations and reduces the pathogenic CD4 T cells in adjuvant arthritis rat. Clin Immunol. 2017;184:77–81. https://doi.org/10.1016/j.clim.2017.04.015.

    Article  CAS  PubMed  Google Scholar 

  32. McInnes IB, Buckley CD, Isaacs JD. Cytokines in rheumatoid arthritis—shaping the immunological landscape. Nat Rev Rheumatol. 2016;12:63–8. https://doi.org/10.1038/nrrheum.2015.171.

    Article  CAS  PubMed  Google Scholar 

  33. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319:516–8. https://doi.org/10.1038/319516a0.

    Article  CAS  PubMed  Google Scholar 

  34. Lawrence T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651. https://doi.org/10.1101/cshperspect.a001651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim HJ, Park C, Kim GY, Park EK, Jeon YJ, Kim S, Hwang HJ, Choi YH. Sargassum serratifolium attenuates RANKL-induced osteoclast differentiation and oxidative stress through inhibition of NF-κB and activation of the Nrf2/HO-1 signaling pathway. Biosci Trends. 2018;12(3):257–65. https://doi.org/10.5582/bst.2018.01107.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JM, Lee JH, Lee GS, Noh EM, Song HK, Gu DR, Kim SC, Lee SH, Kwon KB, Lee YR. Sophorae Flos extract inhibits RANKL-induced osteoclast differentiation by suppressing the NF-κB/NFATc1 pathway in mouse bone marrow cells. BMC Complement Altern Med. 2017;17(1):164. https://doi.org/10.1186/s12906-016-1550-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee EJ, So MW, Hong S, Kim YG, Yoo B, Lee CK. Interleukin-33 acts as a transcriptional repressor and extracellular cytokine in fibroblast-like synoviocytes in patients with rheumatoid arthritis. Cytokine. 2016;77:35–43. https://doi.org/10.1016/j.cyto.2015.10.005.

    Article  CAS  PubMed  Google Scholar 

  38. Boman A, Kokkonen H, Arlestig L, Berglin E, Rantapãã-Dahlqvist S. Receptor activator of nuclear factor kappa-B ligand (RANKL) but not sclerotin or gene polymorphisms is related to joint destruction in early rheumatoid arthritis. Clin Rheumatol. 2017;2017(36):1005–12. https://doi.org/10.1007/s10067-017-3570-4.

    Article  Google Scholar 

  39. Rabelo FS, da Mota LM, Lima RA, Lima FA, Barra GB, de Carvalho JF, Amato AA. The Wnt signaling pathway and rheumatoid arthritis. Autoim Rev. 2019;9:207–10. https://doi.org/10.1016/j.autrev.2009.08.003.

    Article  CAS  Google Scholar 

  40. Xiao CY, Pan YF, Guo XH, Wu YQ, Gu JR, Cai DZ. Expression of β-catenin in rheumatoid arthritis fibroblast-like synoviocytes. Scand J Rheumatol. 2011;2011(40):26–33. https://doi.org/10.3109/03009742.2010.486767.

    Article  Google Scholar 

  41. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344:907–16. https://doi.org/10.1056/NEJM200103223441207.

    Article  CAS  PubMed  Google Scholar 

  42. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;2003(423):356–61. https://doi.org/10.1038/nature01661.

    Article  CAS  Google Scholar 

  43. Van der Bosh MH, Blom AB, Sloetjes AW, Koenders MI, van de Loo FA, van den Berg WB, van Lent PL, van der Kraam PM. Induction of canonical Wnt signaling by synovial overexpression of selected Wnts leads to protease activity and early osteoarthritis-like cartilage damage. Am J Pathol. 2015;185(7):1970–80. https://doi.org/10.1016/j.ajpath.2015.03.013.

    Article  CAS  Google Scholar 

  44. Van der Bosh MH, Blom AB, van de Loo FA, Koenders MI, Lafeber FP, van den Berg WB, van der Kraam PM, van Lent PL. Synovial Wnt signaling induces the expression. Of MMPs and is associated with disease progression in early symptomatic osteoarthritis patients. Arthritis Rheumatol. 2017;69(10):1978–83. https://doi.org/10.1002/art.40206.

    Article  CAS  Google Scholar 

  45. Chu CQ, Field M, Feldmann M, Maini RA. Localization of tumor necrosis factor alpha in synovial tissues and at the cartilage- pannus junction in patients with rheumatoid arthritis. Arthritis Rheum. 1991;34:1125–32. https://doi.org/10.1002/art.1780340908.

    Article  CAS  PubMed  Google Scholar 

  46. Kraan MC, Patel DD, Haringman JJ, Smith MD, Weedon H, Ahern MJ, Breedveld FC, Tak PP. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin-8). Arthritis Res. 2002;3(1):65–71. https://doi.org/10.1186/ar141.

    Article  Google Scholar 

  47. Malysheva K, Rooji K, Lowik CWGM, Baten DL, Rose-John S, Stoika R, Korchynskyi O. Interleukin6/Wnt interactions in rheumatoid arthritis: interleukin 6 inhibits Wnt signaling in synovial fibroblasts and osteoblast. Croat Med J. 2016;57(2):89–98. https://doi.org/10.3325/cmj.2016.57.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Honsawek S, Tanavelee A, Yuktanandana P, Ngarmukos S, Saetan N, Tantavisut S. Dickkopf-1 (DKK-1) in plasma and synovial fluid is inversely correlated with radiographic severity of knee osteoarthritis patients. BMC Musculoskel Dis. 2010;11:257. https://doi.org/10.1186/1471-2474-11-257.

    Article  CAS  Google Scholar 

  49. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, Sugano S, Akiyama T. DKK1, a negative regulator of Wnt signaling, is a target of the b-catenin/TCF pathway. Oncogene. 2004;23:8520–6. https://doi.org/10.1038/sj.onc.1207892.

    Article  CAS  PubMed  Google Scholar 

  50. Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE. FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development. EMBO J. 2005;24(1):73–84. https://doi.org/10.1038/sj.emboj.7600460.

    Article  CAS  PubMed  Google Scholar 

  51. Ma B, Fey M, Hottiger MO. Wnt/β-catenin signaling inhibits CBP- mediated RelA acetylation and expression. Of proinflammatory NF-κB target genes. J Cell Sci. 2015;128:2430–6. https://doi.org/10.1242/jcs.168542.

    Article  CAS  PubMed  Google Scholar 

  52. Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol. 2016;7:378. https://doi.org/10.3389/fimmu.2016.00378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nejak-Bowen K, Kikuchi A, Monga SP. Beta-catenin-NF-κB interactions in murine hepatocytes: a complex to die for. Hepatology. 2013;57:763–74. https://doi.org/10.1002/hep.26042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yun K, Choi YD, Nam JH, Park Z, Im SH. NF-kappaB regulates Lef1 gene expression in chondrocytes. Biochem Biophys Res Commun. 2007;357:589–95. https://doi.org/10.1016/j.bbrc.2007.03.170.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical assistance of Howard Lopes Ribeiro Júnior, Flávia de Araújo Silva and Adalberto Nascimento de Lima Júnior. This work was supported by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delane Viana Gondim.

Additional information

Responsible Editor: Jason J. McDougall.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, L.M., dos Santos Alves, J.M., da Silva Martins, C. et al. Immunoexpression of canonical Wnt and NF-κB signaling pathways in the temporomandibular joint of arthritic rats. Inflamm. Res. 68, 889–900 (2019). https://doi.org/10.1007/s00011-019-01274-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01274-4

Keywords

Navigation