Inflammation Research

, Volume 67, Issue 8, pp 633–654 | Cite as

Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions

  • Ajeet Kumar Singh
  • Sanjay Kumar
  • Manjula Vinayak



Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance.

Materials and methods

In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus.


Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.


Nociceptor Hypersensitivity Nociceptive receptors Inflammation Herbal medicine 



Authors are thankful to DRDO, India for financial support (Grant no. ERIP/ER/1003851/M/01/1336). Partial financial support by DST-FIST and UGC-CAS program to Department of Zoology, BHU; and UGC-UPE to BHU are also acknowledged.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no conflict of interest.


  1. 1.
    Doleys DM. Chronic pain as a hypothetical construct: a practical and philosophical consideration. Front Psychol. 2017;8:664.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006;52:77–92.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Cho Y, Lee S, Kim J, Kang JW, Lee JD. Thread embedding acupuncture for musculoskeletal pain: a systematic review and meta-analysis protocol. BMJ Open. 2018;8(1):e015461.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Vardeh D, Naranjo JF. Anatomy and physiology: mechanisms of nociceptive transmission. In: Yong R, Nguyen M, Nelson E, Urman R, editors. Pain medicine. Cham: Springer; 2017.Google Scholar
  5. 5.
    Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;137:267–84.CrossRefGoogle Scholar
  6. 6.
    Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron-glia crosstalk and neuropathic pain: involvement in the modulation of motor activity in the orofacial region. Int J Mol Sci. 2017;18(10):2051.PubMedCentralCrossRefGoogle Scholar
  7. 7.
    Wang C, Song S, Zhang Y, Ge Y, Fang X, Huang T, Du J, Gao J. Inhibition of the Rho/Rho kinase pathway prevents lipopolysaccharide-induced hyperalgesia and the release of TNF-α and IL-1β in the mouse spinal cord. Sci Rep. 2015;5:145–53.Google Scholar
  8. 8.
    Huang PC, Tsai KL, Chen YW, Lin HT, Hung CH. Exercise combined with ultrasound attenuates neuropathic pain in rats associated with downregulation of IL-6 and TNF-α, but with upregulation of IL-10. Anesth Analg. 2017;124(6):2038–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Wu Y, Na X, Zang Y, Cui Y, Xin W, Pang R, Zhou L, Wei X, Li Y, Liu X. Upregulation of tumor necrosis factor-alpha in nucleus accumbens attenuates morphine-induced rewarding in a neuropathic pain model. Biochem Biophys Res Commun. 2014;449(4):502–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Ferraz CR, Calixto-Campos C, Manchope MF, Casagrande R, Clissa PB, Baldo C, Verri WA Jr. Jararhagin-induced mechanical hyperalgesia depends on TNF-α, IL-1β and NFκB in mice. Toxicon. 2015;103:119–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Carvalho TT, Borghi SM, Pinho-Ribeiro FA, Mizokami SS, Cunha TM, Ferreira SH, Cunha FQ, Casagrande R, Verri WA Jr.. Granulocyte-colony stimulating factor (G-CSF)-induced mechanical hyperalgesia in mice: role for peripheral TNFα, IL-1β and IL-10. Eur J Pharmacol. 2015;749:62–72.PubMedCrossRefGoogle Scholar
  12. 12.
    McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid Arthritis: Targeted treatments for rheumatoid arthritis 1. Lancet. 2017;389:2328–37.PubMedCrossRefGoogle Scholar
  13. 13.
    Lima CK, Silva RM, Lacerda RB, Santos BL, Silva RV, Amaral LS, Quintas LE, Fraga CA, Barreiro EJ, Guimaraes MZ, Miranda AL. LASSBio-1135: a dual TRPV1 antagonist and anti-TNF-alpha compound orally effective in models of inflammatory and neuropathic pain. PLoS One. 2014;9(6):e99510.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Nascimento FP, Macedo-Júnior SJ, Borges FR, Cremonese RP, da Silva MD, Luiz-Cerutti M, Martins DF, Rodrigues AL, Santos AR. Thalidomide reduces mechanical hyperalgesia and depressive-like behavior induced by peripheral nerve crush in mice. Neuroscience. 2015;303:51–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang Y, Zhang J, Gao Q, Bo J, Ma Z. Etanercept attenuates thermal and mechanical hyperalgesia induced by bone cancer. Exp Ther Med. 2017;13(5):2565–69.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Xu T, Li D, Zhou X, Ouyang HD, Zhou LJ, Zhou H, Zhang HM, Wei XH, Liu G, Liu XG. Oral application of magnesium-l-threonate attenuates vincristine-induced allodynia and hyperalgesia by normalization of tumor necrosis factor-α/nuclear factor-κB signaling. Anesthesiology. 2017;126(6):1151–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Jin X, Gereau RW. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-α. J Neurosci. 2006;26:246–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Gruber-Schoffnegger D, Drdla-Schutting R, Hönigsperger C, Wunderbaldinger G, Gassner M, Sandkühler J. Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J Neurosci. 2013;33(15):6540–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Ren K, Dubner R. Neuron-glia crosstalk gets serious, role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21: 570–79.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schäfers M, Sorkin LS, Geis C, Shubayev VI. Spinal nerve ligation induces transient upregulation of tumor necrosis factor receptors 1 and 2 in injured and adjacent uninjured dorsal root ganglia in the rat. Neurosci Lett. 2003;347:179–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Watkins LR, Maier SF. Glia, a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003;2:973–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Watkins LR, Hutchinson MR, Milligan ED, Maier SF. “Listening” and “talking” to neurons, implications of immune activation for pain control and increasing the efficacy of opioids. Brain Res Rev. 2007;56:148–69.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Korhonen T, Karppinen J, Paimela L, Malmivaara A, Lindgren KA, Bowman C, Hammond A, Kirkham B, Järvinen S, Niinimäki J, Veeger N, Haapea M, Torkki M, Tervonen O, Seitsalo S, Hurri H. The treatment of disc-herniation-induced sciatica with infliximab, one-year follow-up results of FIRST II, a randomized controlled trial. Spine.2006;31:2759–66.PubMedCrossRefGoogle Scholar
  24. 24.
    Cohen SP, Bogduk N, Dragovich A, Buckenmaier CC III, Griffith S, Kurihara C, Raymond J, Richter PJ, Williams N, Yaksh TL. Randomized, double-blind, placebo-controlled, dose-response, and preclinical safety study of transforaminal epidural etanercept for the treatment of sciatica. Anesthesiology. 2009;110:1116–26.PubMedCrossRefGoogle Scholar
  25. 25.
    Piccinelli AC, Morato PN, Dos Santos Barbosa M, Croda J, Sampson J, Kong X, Konkiewitz EC, Ziff EB, Amaya-Farfan J, Kassuya CA. Limonene reduces hyperalgesia induced by gp120 and cytokines by modulation of IL-1 β and protein expression in spinal cord of mice. Life Sci. 2017;174:28–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Nieto FR, Clark AK, Grist J, Hathway GJ, Chapman V, Malcangio M. Neuron-immune mechanisms contribute to pain in early stages of arthritis. J Neuroinflamm. 2016;13:96.CrossRefGoogle Scholar
  27. 27.
    Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, Fandl JP, Lee F, Carver S, McNay J, Bailey K, Ramakanth S, Hutabarat R, Huang TT, Radziejewski C, Yancopoulos GD, Stahl N. Cytokine traps, multi-component, high affinity blockers of cytokine action. Nat Med. 2003;9(1):47–52.PubMedCrossRefGoogle Scholar
  28. 28.
    Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, Gao YJ, Roy K, Corfas G, Lo EH, Ji RR. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14:331–36.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Opree A, Kress M. Involvement of the protoinflammatory cytokines Tumor Necrosis Factor-α, IL-1β, and IL-6 but not IL-8 in the development of heat hyperalgesia, effects on heat-evoked Calcitonin Gene-Related Peptide release from rat skin. J Neurosci. 2000;20(16):6289–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Obreja O, Rathee PK, Lips KS, Distler C, Kress M. IL-1β potentiates heat-activated currents in rat sensory neurons, involvement of IL-1R1, tyrosine kinase, and protein kinase C. FASEB. 2002;16:1497–502.CrossRefGoogle Scholar
  31. 31.
    Safieh-Garabedian B, Poole S, Allchorne A, Winter J, Woolf CJ. Contribution of interleukin-1β to the inflammation-induced increase in nerve growth factor levels and inflammatory hyperalgesia. Br J Pharmacol. 1995;115:1265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome analysis reveals neuroprotective aspects of human reactive astrocytes induced by interleukin 1β. Sci Rep. 2017;7(1):139–88.CrossRefGoogle Scholar
  33. 33.
    Schäfers M, Sorkin L. Effect of cytokines on neuronal excitability. Neurosci Lett. 2008;437:188–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, Ye DW, Tian YK. Interleukin-6: an emerging regulator of pathological pain. J Neuroinflammation. 2016;13(1):141.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sanayama Y, Ikeda K, Saito Y, Kagami S, Yamagata M, Furuta S, Kashiwakuma D, Iwamoto I, Umibe T, Nawata Y, Matsumura R, Sugiyama T, Sueishi M, Hiraguri M, Nonaka K, Ohara O, Nakajima H. Prediction of therapeutic responses to tocilizumab in patients with rheumatoid arthritis: biomarkers identified by analysis of gene expression in peripheral blood mononuclear cells using genome-wide DNA microarray. Arthritis Rheumatol. 2014;66:1421–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Klein MA, Moller JC, Jones LL. Impaired neuroglial activation in interleukin-6 deficient mice. Glia. 1997;19:227–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Ma W, Quirion R. Up-regulation of interleukin-6 induced by prostaglandin E from invading macrophages following nerve injury: an in vivo and in vitro study. J Neurochem. 2005;93:664–73.PubMedCrossRefGoogle Scholar
  38. 38.
    St-Jacques B, Ma W. Role of prostaglandin E2 in the synthesis of the proinflammatory cytokine interleukin-6 in primary sensory neurons: an in vivo and in vitro study. J Neurochem. 2011;118:841–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Dominguez E, Rivat C, Pommier B, Mauborgne A, Pohl M. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem. 2008;107:50–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee KM, Jeon SM, Cho HJ. Interleukin-6 induces microglial CX3CR1 expression in the spinal cord after peripheral nerve injury through the activation of p38 MAPK. Eur J Pain. 2010;14:682.PubMedCrossRefGoogle Scholar
  41. 41.
    Fehrenbacher JC, Burkey TH, Nicol GD, Vasko MR. Tumor necrosis factor α and interleukin-1β stimulate the expression of cyclooxygenase II but do not alter prostaglandin E2 receptor mRNA levels in cultured dorsal root ganglion cells. Pain. 2006;113:113–22.CrossRefGoogle Scholar
  42. 42.
    Guay J, Bateman K, Gordon R, Mancini J, Riendeau D. Carrageenan-induced paw edema in rat elicits a predominant prostaglandin E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J Biol Chem. 2004;279:24866–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Veiga AP, Duarte ID, Avila MN, da Motta PG, Tatsuo MA, Francischi JN. Prevention by celecoxib of secondary hyperalgesia induced by formalin in rats. Life Sci. 2004;75:2807–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Svensson CI, Yaksh TL. The spinal phospholipasecyclooxygenase- prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol. 2002;42:553–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Popp L, Häussler A, Olliges A, Nüsing R, Narumiya S, Geisslinger G, Tegeder I. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice. Eur J Pain. 2009;13(7):691–703.PubMedCrossRefGoogle Scholar
  46. 46.
    Seybold VS, Jia YP, Abrahams LG. Cyclooxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain. 2003;105:47–55.PubMedCrossRefGoogle Scholar
  47. 47.
    Ghilardi JR, Svensson CI, Rogers SD, Yaksh TL, Mantyh PW. Constitutive spinal cyclooxygenase-2 participates in the initiation of tissue injury-induced hyperalgesia. J Neurosci. 2004;24:2727–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Araldi D, Ferrari LF, Lotufo CM, Vieira AS, Athié MC, Figueiredo JG, Duarte DB, Tambeli CH, Ferreira SH, Parada CA. Peripheral inflammatory hyperalgesia depends on the COX increase in the dorsal root ganglion. Proc Natl Acad Sci USA. 2013;110(9):3603–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee WH, Li LL, Chawla A, Hudmon A, Lai YY, Courtney MJ, Hohmann AG. Disruption of nNOS-NOS1AP protein-protein interactions suppresses neuropathic pain in mice. Pain. 2018. Scholar
  50. 50.
    Sun JS, Yang YJ, Zhang YZ, Huang W, Li ZS, Zhang Y. Minocycline attenuates pain by inhibiting spinal microglia activation in diabetic rats. Mol Med Rep. 2015;12(2):2677–82.PubMedCrossRefGoogle Scholar
  51. 51.
    Kakita H, Aoyama M, Nagaya Y, Asai H, Hussein MH, Suzuki M, Kato S, Saitoh S, Asai K. Diclofenac enhances proinflammatory cytokine induced phagocytosis of cultured microglia via nitric oxide production. Toxicol Appl Pharmacol. 2013;268:99–105.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou HY, Chen SR, Pan HL. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert Rev Clin Pharmacol. 2011;4(3):379–88.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wallace MS, Lam V, Schettler J. NGX426, an oral AMPA-kainate antagonist, is effective in human capsaicin-induced pain and hyperalgesia. Pain Med. 2012;13(12):1601–10.PubMedCrossRefGoogle Scholar
  54. 54.
    Weyer AD, Lehto SG. Development of TRPM8 Antagonists to Treat Chronic Pain and Migraine. Pharmaceuticals (Basel). 2017;10(2):37.CrossRefGoogle Scholar
  55. 55.
    Chen J, Hackos DH. TRPA1 as a drug target—promise and challenges. Naunyn Schmiedebergs Arch Pharmacol. 2015;388(4):451–63.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413: 203–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, Julius D, Jordt SE, Zygmunt PM. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci. 2005;102(34):12248–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13.PubMedCrossRefGoogle Scholar
  59. 59.
    Julius D. TRP Channels and Pain. Annu Rev Cell Dev Biol. 2013;29:355–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature. 2007;445(7130):858–65.PubMedCrossRefGoogle Scholar
  61. 61.
    Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lawrence T. The Nuclear Factor NF-κB Pathway in Inflammation. Cold Spring Harb Perspect Biol. 2009;1(6):a001651.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000;12:85–98.PubMedCrossRefGoogle Scholar
  64. 64.
    Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sun SC, Liu ZG. A special issue on NF-kappaB signaling and function. Cell Res. 2011;21:1–2.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Sun SC. Non-canonical NF-kappaB signaling pathway. Cell Res. 2011;21:71–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Noort AR, Tak PP, Tas SW. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther. 2015;17(1):15.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci. 2004;29:72–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Ma W, Bisby MA. Increased activation of nuclear factor kappa B in rat lumbar dorsal root ganglion neurons following partial sciatic nerve injuries. Brain Res. 1998;797:243–54.PubMedCrossRefGoogle Scholar
  70. 70.
    Lee MK, Han SR, Park MK, Kim MJ, Bae YC, Kim SK, Park JS, Ahn DK. Behavioral evidence for the differential regulation of p-p38 MAPK and p-NF-kappaB in rats with trigeminal neuropathic pain. Mol Pain. 2011;7:57.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hartung JE, Eskew O, Wong T, Tchivileva IE, Oladosu FA, O’Buckley SC, Nackley AG. Nuclear factor-kappa B regulates pain and COMT expression in a rodent model of inflammation. Brain Behav Immun. 2015;50:196–202.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Luo JG, Zhao XL, Xu WC, Zhao XJ, Wang JN, Lin XW, Sun T, Fu ZJ. Activation of spinal NF-kappaB/p65 contributes to peripheral inflammation and hyperalgesia in rat adjuvant-induced arthritis. Arthritis Rheumatol. 2014;66:896–906.PubMedCrossRefGoogle Scholar
  73. 73.
    Fu ES, Zhang YP, Sagen J, Yang ZQ, Bethea JR. Transgenic glial nuclear factor-kappa B inhibition decreases formalin pain in mice. Neuroreport. 2008;18:713–7.CrossRefGoogle Scholar
  74. 74.
    Ostenfeld T, Krishen A, Lai RY, Bullman J, Green J, Anand P, Scholz J, Kelly M. A randomized, placebo-controlled trial of the analgesic efficacy and safety of the p38 MAP kinase inhibitor, losmapimod, in patients with neuropathic pain from lumbosacral radiculopathy. Clin J Pain. 2015;31(4):283–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Ellis A, Bennett DLH. Neuroinflammation and the generation of neuropathic pain. Br J Anaesth. 2013;111(1):26–37.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen NF, Chen WF, Sung CS, Lu CH, Chen CL, Hung HC, Feng CW, Chen CH, Tsui KH, Kuo HM, Wang HM, Wen ZH, Huang SY. Contributions of p38 and ERK to the antinociceptive effects of TGF-β1 in chronic constriction injury-induced neuropathic rats. J Headache Pain. 2016;17(1):72.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Luo X, Fitzsimmons B, Mohan A, Zhang L, Terrando N, Kordasiewicz H, Ji RR. Intrathecal administration of antisense oligonucleotide against p38α but not p38β MAP kinase isoform reduces neuropathic and postoperative pain and TLR4-induced pain in male mice. Brain Behav Immun. 2017;30508(17):889–1591.Google Scholar
  78. 78.
    Donnerer J, Liebmann I. Upregulation of BDNF and Interleukin-1ß in rat spinal cord following noxious hind paw stimulation. Neurosci Lett. 2017;665:152–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhang X, Zhang H, Shao H, Xue Q, Yu B. ERK MAPK activation in spinal cord regulates phosphorylation of Cdk5 at Serine 159 and contributes to peripheral inflammation induced pain hypersensitivity. PLoS One. 2014;9(1):e87788.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hensellek S, Brell P, Schaible HG, Bräuer R, Segond von Banchet G. The cytokine TNF-α increases the proportion of DRG neurons expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol Cell Neurosci. 2007;36: 381–91.PubMedCrossRefGoogle Scholar
  82. 82.
    Sanna MD, Ghelardini C, Galeeotti N. Regionally selective activation of ERK and JNK in morphine paradoxical hyperalgesia, A step towards improving opioid pain therapy. Neuropharmacology. 2014;86:67–77.PubMedCrossRefGoogle Scholar
  83. 83.
    Skopelja-Gardner S, Saha M, Alvarado-Vazquez PA, Liponis BS, Martinez E, Romero-Sandoval EA. Mitogen-activated protein kinase phosphatase-3 (MKP-3) in the surgical wound is necessary for the resolution of postoperative pain in mice. J Pain Res. 2017;10:763–74.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gao YJ, Ji RR. c-Fos or pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J. 2009;2:11–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Singh AK, Vinayak M. Activation of ERK signaling by Src family kinases (SFKs) in DRG neurons contributes to hydrogen peroxide (H2O2) induced thermal hyperalgesia. Free Radic Res. 2017; 51(9–10):838–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Singh AK, Vinayak M. Curcumin attenuates CFA induced thermal hyperalgesia by modulation of antioxidant enzymes and down regulation of TNF-α, IL-1β and IL-6. Neurochem Res. 2015;40:463–72.PubMedCrossRefGoogle Scholar
  87. 87.
    Singh AK, Vinayak M. Anti-nociceptive effect of resveratrol during inflammatory hyperalgesia via differential regulation of pro-inflammatory mediators. Phytother Res. 2016;30(7):1164–71.PubMedCrossRefGoogle Scholar
  88. 88.
    Singh AK, Vinayak M. Resveratrol alleviates inflammatory hyperalgesia by modulation of reactive oxygen species (ROS), antioxidant enzymes and ERK activation. Inflamm Res. 2017. Scholar
  89. 89.
    Fosbøl EL, Folke F, Jacobsen S, Rasmussen JN, Sørensen R, Schramm TK, Andersen SS, Rasmussen S, Poulsen HE, Køber L, Torp-Pedersen C, Gislason GH. Cause specific cardiovascular risk associated with nonsteroidal anti-inflammatory drugs among healthy individuals. Circ Cardiovasc Qual Outcomes. 2010;3(4):395–405.PubMedCrossRefGoogle Scholar
  90. 90.
    Möller B, Pruijm M, Adler S, Scherer A, Villiger PM, Finckh A. Chronic NSAID use and long term decline of renal function in a prospective rheumatoid arthritis cohort study. Ann Rheum Dis. 2015;74(4):718–23.PubMedCrossRefGoogle Scholar
  91. 91.
    Mallick-Searle T, Fillman M. The pathophysiology, incidence, impact, and treatment of opioid-induced nausea and vomiting. J Am Assoc Nurse Pract. 2017;29(11):704–10.PubMedGoogle Scholar
  92. 92.
    La JH, Wang J, Bittar A, Shim HS, Bae C, Chung JM. Differential involvement of reactive oxygen species in a mouse model of capsaicin-induced secondary mechanical hyperalgesia and allodynia. Mol Pain. 2017. Scholar
  93. 93.
    Lochhead JJ, McCaffrey G, Sanchez-Covarrubias L, Finch JD, Demarco KM, Quigley CE, Davis TP, Ronaldson PT. Tempol modulates changes in xenobiotic permeability and occludin oligomeric assemblies at the blood-brain barrier during inflammatory pain. Am J Physiol Heart Circ Physiol. 2012;302(3):582–93.CrossRefGoogle Scholar
  94. 94.
    Xu YQ, Jin SJ, Liu N, Li YX, Zheng J, Ma L, Du J, Zhou R, Zhao CJ, Niu Y, Sun T, Yu JQ. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway. Biochem Biophys Res Commun. 2014;451(4):568–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Schwartz ES, Lee I, Chung K, Chung JM. Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain. 2008;138:514–24.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Di YX, Hong C, Jun L, Renshan G, Qinquan L. Curcumin attenuates mechanical and thermal hyperalgesia in chronic constrictive injury model of neuropathic pain. Pain Ther. 2014;3(1):59–69.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 2006;33:940–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Cao H, Zheng JW, Li JJ, Meng B, Li J, Ge RS. Effects of curcumin on pain threshold and on the expression of nuclear factor κ B and CX3C receptor 1 after sciatic nerve chronic constrictive injury in rats. Chin J Integr Med. 2014;20(11):850–56.PubMedCrossRefGoogle Scholar
  99. 99.
    Li X, Liu RH, Cao H, Li J. Effects of curcumin on behavior and p-ERK, p-CREB, c-fos expression in dorsal root ganglion in chronic constrictive injury rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2009;25(3):418–22.PubMedGoogle Scholar
  100. 100.
    Yeon KY, Kim SA, Kim YH, Lee MK, Ahn DK, Kim HJ, Kim JS, Jung SJ, Oh SB. Curcumin produces an anti- hyperalgesic effect via antagonism of TRPV1. J Dent Res. 2010;89:170–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Banafshe HR, Hamidi GA, Noureddini M, Mirhashemi SM, Mokhtari R, Shoferpour M. Effect of curcumin on diabetic peripheral neuropathic pain: possible involvement of opioid system. Eur J Pharmacol. 2014;723:202–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhu X, Li Q, Chang R, Yang D, Song Z, Guo Q, Huang C. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One. 2014;9(3):e91303.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Meng B, Shen LL, Shi XT, Gong YS, Fan XF, Li J, Cao H. Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain. Neurosci Lett. 2015;605:59–64.PubMedCrossRefGoogle Scholar
  104. 104.
    Ji FT, Liang JJ, Liu L, Cao MH, Li F. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury. Chin Med J (Engl). 2013;126(6):1125–31.Google Scholar
  105. 105.
    Zhao WC, Zhang B, Liao MJ, Zhang WX, He WY, Wang HB, Yang CX. Curcumin ameliorated diabetic neuropathy partially by inhibition of NADPH oxidase mediating oxidative stress in the spinal cord. Neurosci Lett. 2014;560:81–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Fattori V, Pinho-Ribeiro FA, Borghi SM, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA Jr. Curcumin inhibits superoxide anion-induced pain-like behavior and leukocyte recruitment by increasing Nrf2 expression and reducing NF-κB activation. Inflamm Res. 2015;64(12):993–1003.PubMedCrossRefGoogle Scholar
  107. 107.
    Zhao X, Xu Y, Zhao Q, Chen CR, Liu AM, Huang ZL. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: Descending monoamine system and opioid receptors are differentially involved. Neuropharmacology. 2012;62(2):843–54.PubMedCrossRefGoogle Scholar
  108. 108.
    Murakami Y, Ishii H, Takada N, Tanaka S, Machin M, Ito S, Fujisawa S. Comparative anti-inflammatory activities of curcumin and tetrahydrocurcumin based on the phenolic O-H bond dissociation enthalpy, ionization potential and quantum chemical descriptor. Anticancer Res. 2008;28:699–707.PubMedGoogle Scholar
  109. 109.
    Zhao S, Yang J, Han X, Gong Y, Rao S, Wu B, Yi Z, Zou L, Jia T, Li L, Yuan H, Shi L, Zhang C, Gao Y, Li G, Liu S, Xu H, Liu H, Liang S. Effects of nanoparticle-encapsulated curcumin on HIV-gp120-associated neuropathic pain induced by the P2 × 3 receptor in dorsal root ganglia. Brain Res Bull. 2017;135:53–61.PubMedCrossRefGoogle Scholar
  110. 110.
    Li Y, Zhang Y, Liu DB, Liu HY, Hou WG, Dong YS. Curcumin attenuates diabetic neuropathic pain by downregulating TNF-α in a rat model. Int J Med Sci. 2013;10(4):377–81.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wu Y, Qin D, Yang H, Fu H. Evidence for the Participation of Acid-Sensing Ion Channels (ASICs) in the Antinociceptive Effect of Curcumin in a Formalin-Induced Orofacial Inflammatory Model. Cell Mol Neurobiol. 2017;37(4):635–42.PubMedCrossRefGoogle Scholar
  112. 112.
    Yang M, Wang J, Yang C, Han H, Rong W, Zhang G. Oral administration of curcumin attenuates visceral hyperalgesia through inhibiting phosphorylation of TRPV1 in rat model of ulcerative colitis. Mol Pain. 2017;13. Scholar
  113. 113.
    Hu X, Huang F, Szymusiak M, Tian X, Liu Y, Wang ZJ. PLGA -Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα. PLoS One. 2016;11(1):e0146393.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tao L, Ding Q, Gao C, Sun X. Resveratrol attenuates neuropathic pain through balancing pro-inflammatory and anti-inflammatory cytokines release in mice. Int Immunopharmacol. 2016;34:165–72.PubMedCrossRefGoogle Scholar
  115. 115.
    Tsai RY, Chou KY, Shen CH, Chien CC, Tsai WY, Huang YN, Tao PL, Lin YS, Wong CS. Resveratrol regulates N-Methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant rats. Anesth Analg. 2012;115(4):944–52.PubMedCrossRefGoogle Scholar
  116. 116.
    Shao H, Xue Q, Zhang F, Luo Y, Zhu H, Zhang X, Zhang H, Ding W, Yu B. Spinal SIRT1 activation attenuates neuropathic pain in mice. PLoS One. 2014;9(6):e100938.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yin Q, Lu FF, Zhao Y, Cheng MY, Fan Q, Cui J, Liu L, Cheng W, Yan CD. Resveratrol facilitates pain attenuation in a rat model of neuropathic pain through the activation of spinal Sirt1. Reg Anesth Pain Med. 2013;38(2):93–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhao X, Yu C, Wang C, Zhang JF, Zhou WH, Cui WG, Ye F, Xu Y. Chronic resveratrol treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with mononeuropathy: involvement of serotonergic system. Neuropharmacology. 2014;85:131–41.PubMedCrossRefGoogle Scholar
  119. 119.
    Xie J, Liu S, Wu B, Li G, Rao S, Zou L, Yi Z, Zhang C, Jia T, Zhao S, Schmalzing G, Hausmann R, Nie H, Li G, Liang S. The protective effect of resveratrol in the transmission of neuropathic pain mediated by the P2 × 7 receptor in the dorsal root ganglia. Neurochem Int. 2017;103:24–35.PubMedCrossRefGoogle Scholar
  120. 120.
    Cheng W, Zhao Y, Liu H, Fan Q, Lu FF, Li J, Yin Q, Yan CD. Resveratrol attenuates bone cancer pain through the inhibition of spinal glial activation and CX3CR1 upregulation. Fundam Clin Pharmacol. 2014;28(6):661–70.PubMedCrossRefGoogle Scholar
  121. 121.
    Pham-Marcou TA, Beloeil H, Sun X, Gentili M, Yaici D, Benoit G, Benhamou D, Mazoit JX. Antinociceptive effect of resveratrol in carrageenan-evoked hyperalgesia in rats: Prolonged effect related to COX-2 expression impairment. Pain. 2008;140:274–83.PubMedCrossRefGoogle Scholar
  122. 122.
    Torres-López JE, Ortiz MI, Castañeda-Hernández G, Alonso-López R, Asomoza-Espinosa R, Granados-Soto V. Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. Life Sci. 2002;70:1669–76.PubMedCrossRefGoogle Scholar
  123. 123.
    Gao ZB, Hu GY. Trans-resveratrol, a red wine ingredient, inhibits voltage-activated potassium current in rat hippocampal neurons. Brain Res. 2005;1056:68–75.PubMedCrossRefGoogle Scholar
  124. 124.
    Granados-Soto V, Argüelles C, Ortiz M. The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. Neuropharmacology. 2002;43:917–23.PubMedCrossRefGoogle Scholar
  125. 125.
    Liew R, Stagg MA, MacLeod KT, Collins P. The red wine polyphenol, resveratrol, exerts acute direct actions on guinea-pig ventricular myocytes. Eur J Pharmacol. 2005;519:1–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Yu L, Wang S, Kogure Y, Yamamoto S, Noguchi K, Dai Y. Modulation of TRP channels by resveratrol and other stilbenoids. Mol Pain. 2013;9:1.CrossRefGoogle Scholar
  127. 127.
    Im KH, Kim TH, Song JH. Resveratrol inhibits Na + currents in rat dorsal root ganglion neurons. Brain Res. 2005;1045:134–41.CrossRefGoogle Scholar
  128. 128.
    Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain. 2012;8:5.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wu B, Ma Y, Yi Z, Liu S, Rao S, Zou L, Wang S, Xue Y, Jia T, Zhao S, Shi L, Li L, Yuan H, Liang S. Resveratrol-decreased hyperalgesia mediated by the P2 × 7 receptor in gp120-treated rats. Mol Pain. 2017;13:1744806917707667.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Valério DA, Georgetti SR, Magro DA, Casagrande R, Cunha TM, Vicentini FT, Vieira SM, Fonseca MJ, Ferreira SH, Cunha FQ, Verri WA Jr. Quercetin reduces inflammatory pain: inhibition of oxidative stress and cytokine production. J Nat Prod. 2009;72:1975–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Ji C, Xu Y, Han F, Sun D, Zhang H, Li X, Yao X, Wang H. Quercetin alleviates thermal and cold hyperalgesia in a rat neuropathic pain model by inhibiting toll-like receptor signaling. Biomed Pharmacother. 2017;94:652–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Azevedo MI, Pereira AF, Nogueira RB, Rolim FE, Brito GA, Wong DV, Lima-Júnior RC, de Albuquerque Ribeiro R, Vale ML. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Mol Pain. 2013;9:53.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Raygude KS1, Kandhare AD, Ghosh P, Ghule AE, Bodhankar SL. Evaluation of ameliorative effect of quercetin in experimental model of alcoholic neuropathy in rats. Inflammopharmacol. 2012;20:331–41.CrossRefGoogle Scholar
  134. 134.
    Gao W, Zan Y, Wang ZJ, Hu XY, Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin. 2016;37(9):1166–77.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Borghi SM, Pinho-Ribeiro FA, Fattori V, et al. Quercetin inhibits peripheral and spinal cord nociceptive mechanisms to reduce intense acute swimming-induced muscle pain in mice. PLoS One. 2016;11(9):e0162267.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Nie J, Liu X. Quercetin alleviates generalized hyperalgesia in mice with induced adenomyosis. Mol Med Repo. 2017;16(4):5370–76.CrossRefGoogle Scholar
  137. 137.
    Calixto-Campos C, Corrêa MP, Carvalho TT, Zarpelon AC, Hohmann MS, Rossaneis AC, Coelho-Silva L, Pavanelli WR, Pinge-Filho P, Crespigio J1, Bernardy CC, Casagrande R, Verri WA Jr. Quercetin reduces Ehrlich tumor-induced cancer pain in mice. Anal Cell Pathol (Amst). 2015;2015:285708.Google Scholar
  138. 138.
    Guazelli CFS, Staurengo-Ferrari L, Zarpelon AC, Pinho-Ribeiro FA, Ruiz-Miyazawa KW, Vicentini FTMC., Vignoli JA, Camilios-Neto D, Georgetti SR, Baracat MM, Casagrande R, Verri WA Jr. Quercetin attenuates zymosan-induced arthritis in mice. Biomed Pharmacother. 2018;102:175–84.PubMedCrossRefGoogle Scholar
  139. 139.
    Ji JJ, Lin Y, Huang SS, Zhang HL, Diao YP, Li K. Quercetin: a potential natural drug for adjuvant treatment of rheumatoid arthritis. Afr J Tradit Complement Altern Med. 2013;10(3):418–21.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Lee SJ, Han JI, Lee GS, Park MJ, Choi IG, Na KJ, Jeung EB. Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a guinea pig model. Biol Pharm Bull. 2007;30:184–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Li HY, Park CK, Jung SJ, Choi SY, Lee SJ, Park K, Kim JS, Oh SB. Eugenol inhibits K + currents in trigeminal ganglion neurons. J Dent Res. 2007;86:898–902.PubMedCrossRefGoogle Scholar
  142. 142.
    Yeon KY, Chung G, Kim YH, Hwang JH, Davies AJ, Park MK, Ahn DK, Kim JS, Jung SJ, Oh SB. Eugenol reverses mechanical allodynia after peripheral nerve injury by inhibiting hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Pain. 2011;152(9):2108–16.PubMedCrossRefGoogle Scholar
  143. 143.
    Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB. Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain. 2009;144(1–2):84–94.PubMedCrossRefGoogle Scholar
  144. 144.
    Park CK, Li HY, Yeon KY, Jung SJ, Choi SY, Lee SJ, Lee S, Park K, Kim JS, Oh SB. Eugenol inhibits sodium currents in dental afferent neurons. J Dent Res. 2006;85:900–4.PubMedCrossRefGoogle Scholar
  145. 145.
    Cho JS, Kim TH, Lim JM, Song JH. Effects of eugenol on Na + currents in rat dorsal root ganglion neurons. Brain Res. 2008;1243:53–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Hu CY, Zhao YT. Analgesic effects of naringenin in rats with spinal nerve ligation-induced neuropathic pain. Biomed Rep. 2014;2(4):569–73.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, Verri WA Jr. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016;105:508–19.PubMedCrossRefGoogle Scholar
  148. 148.
    Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, Baracat MM, Casagrande R, Verri WA Jr. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS One. 2016;11(4):e0153015.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia. 2012;83(4):650–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Hasanein P, Fazeli F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J Physiol Biochem. 2014;70(4):997–1006.PubMedCrossRefGoogle Scholar
  151. 151.
    Raposo D, Morgado C, Pereira-Terra P, Tavares I. Nociceptive spinal cord neurons of laminae I-III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Res Bull. 2015;110:68–75.PubMedCrossRefGoogle Scholar
  152. 152.
    Kuang X, Huang Y, Gu HF, Zu XY, Zou WY, Song ZB, Guo QL. Effects of intrathecal epigallocatechin gallate, an inhibitor of Toll-like receptor 4, on chronic neuropathic pain in rats. Eur J Pharmacol. 2012;676(1–3):51–6.PubMedCrossRefGoogle Scholar
  153. 153.
    Choi JI, Kim WM, Lee HG, Kim YO, Yoon MH. Role of neuronal nitric oxide synthase in the antiallodynic effects of intrathecal EGCG in a neuropathic pain rat model. Neurosci Lett. 2012;510(1):53–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Álvarez-Pérez B, Homs J, Bosch-Mola M, Puig T, Reina F, Verdú E, Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur J Pain. 2016;20(3):341–52.PubMedCrossRefGoogle Scholar
  155. 155.
    Bosch-Mola M, Homs J, Álvarez-Pérez B, Puig T, Reina F, Verdú E, Boadas-Vaello P. (-)-Epigallocatechin-3-gallate antihyperalgesic effect associates with reduced CX3CL1 chemokine expression in spinal cord. Phytother Res. 2017;31(2):340–4.PubMedCrossRefGoogle Scholar
  156. 156.
    Groninger H, Schisler RE. Topical Capsaicin for Neuropathic Pain. J Palliat Med. 2012; (8): 946–7.Google Scholar
  157. 157.
    Anand P, Bley K. Topical capsaicin for pain management: therapeutic potential and mechanisms of action of the new high concentration capsaicin 8% patch. Br J Anaesthesia. 2011;107(4):490–502.CrossRefGoogle Scholar
  158. 158.
    Borbiro I, Badheka D, Rohacs T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci Signal. 2015;8(363):ra15.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Altier C. Spicing up the sensation of stretch: TRPV1 controls mechanosensitive Piezo channels. Sci Signal. 2015;8(363):fs3.PubMedCrossRefGoogle Scholar
  160. 160.
    Bhatia HS, Roelofs N, Muñoz E, Fiebich BL. Alleviation of Microglial Activation Induced by p38 MAPK/MK2/PGE2 Axis by Capsaicin: Potential Involvement of other than TRPV1 Mechanism/s. Sci Rep. 2017;7:116.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    de Santana MF, Guimarães AG, Chaves DO, Silva JC, Bonjardim LR, de Lucca Júnior W, Ferro JN, Barreto Ede O, dos Santos FE, Soares MB, Villarreal CF, Quintans Jde S. Quintans-Júnior LJ.The anti-hyperalgesic and anti-inflammatory profiles of p-cymene: Evidence for the involvement of opioid system and cytokines. Pharm Biol. 2015;53(11):1583–90.PubMedCrossRefGoogle Scholar
  162. 162.
    Brito RG, Dos Santos PL, Quintans JS, de Lucca Júnior W, Araújo AA, Saravanan S, Menezes IR, Coutinho HD, Quintans-Júnior LJ. Citronellol, a natural acyclic monoterpene, attenuates mechanical hyperalgesia response in mice: evidence of the spinal cord lamina I inhibition. Chem Biol Interact. 2015;239:111–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SC, Antoniolli AR, Bon-jardim LR, Silva FA, Santos JP, Rocha RF, Moreira JC, Araújo AA, Gelain DP, Quintans-Júnior LJ. Bioassay-guided evaluation of antioxidantand antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol. 2010;107:949–57.PubMedCrossRefGoogle Scholar
  164. 164.
    Guimarães AG, Scotti L, Scotti MT, Mendonça Júnior FJ, Melo NS, Alves RS, De Lucca Júnior W, Bezerra DP, Gelain DP, Quintans Júnior LJ. Evidence for the involvement of descending pain-inhibitory mechanisms in the attenuation of cancer pain by carvacrol aided through a docking study. Life Sci. 2014;116(1):8–15.PubMedCrossRefGoogle Scholar
  165. 165.
    Paula-Freire LI, Andersen ML, Gama VS, Molska GR, Carlini EL. The oral administration of trans-caryophyllene attenuates acute and chronic pain in mice. Phytomedicine. 2014;21(3):356–62.PubMedCrossRefGoogle Scholar
  166. 166.
    Trevisan G, Rossato MF, Walker CI, Klafke JZ, Rosa F, Oliveira SM, Tonello R, Guerra GP, Boligon AA, Zanon RB, Athayde ML, Ferreira J. Identification of the plant steroid α-spinasterol as a novel transient receptor potential vanilloid 1 antagonist with antinociceptive properties. J Pharmacol Exp Ther. 2012;343(2):258–69.PubMedCrossRefGoogle Scholar
  167. 167.
    Zhang FF, Morioka N, Kitamura T, Fujii S, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci. 2016;155:116–22.PubMedCrossRefGoogle Scholar
  168. 168.
    Goel R, Tyagi N. Potential contribution of antioxidant mechanism in the defensive effect of lycopene against partial sciatic nerve ligation induced behavioral, biochemical and histopathological modification in wistar rats. Drug Res (Stuttg). 2016;66(12):633–8.CrossRefGoogle Scholar
  169. 169.
    Kuhad A, Sharma S, Chopra K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pain. 2008;12(5):624–32.PubMedCrossRefGoogle Scholar
  170. 170.
    Veloso Cde C, Rodrigues VG, Ferreira RC, Duarte LP, Klein A, Duarte ID, Romero TR. Perez Ade C. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to opioidergic activation. Planta Med. 2014;80(17):1615–21.PubMedCrossRefGoogle Scholar
  171. 171.
    de Carvalho Veloso C, Rodrigues VG, Ferreira RC, Duarte LP, Klein A, Duarte ID, Romero TR, de Castro Perez A. Tingenone, a pentacyclic triterpene, induces peripheral antinociception due to NO/cGMP and ATP-sensitive K(+) channels pathway activation in mice. Eur J Pharmacol. 2015;755:1–5.PubMedCrossRefGoogle Scholar
  172. 172.
    Dolatshahi M, Farbood Y, Sarkaki A, Mansouri SM, Khodadadi A. Ellagic acid improves hyperalgesia and cognitive deficiency in 6-hydroxidopamine induced rat model of Parkinson’s disease. Iran J Basic Med Sci. 2015;18(1):38–46.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Gauthier ML, Beaudry F, Vachon P. Intrathecal [6]-gingerol administration alleviates peripherally induced neuropathic pain in male Sprague-Dawley rats. Phytother Res. 2013;27(8):1251–4.PubMedCrossRefGoogle Scholar
  174. 174.
    Gao Y, Liu H, Deng L, Zhu G, Xu C, Li G, Liu S, Xie J, Liu J, Kong F, Wu R, Li G, Liang S. Effect of emodin on neuropathic pain transmission mediated by P2 × 2/3 receptor of primary sensory neurons. Brain Res Bull. 2011;84(6):406–13.PubMedCrossRefGoogle Scholar
  175. 175.
    Sui F, Huo HR, Zhang CB, Yang N, Guo JY, Du XL, Zhao BS, Liu HB, Li LF, Guo SY, Jiang TL. Emodin down-regulates expression of TRPV1 mRNA and its function in DRG neurons in vitro. Am J Chin Med. 2010;38(4):789–800.PubMedCrossRefGoogle Scholar
  176. 176.
    Zhao X, Li XL, Liu X, Wang C, Zhou DS, Ma Q, Zhou WH, Hu ZY. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors. Pharmacol Res. 2015;102:286–97.PubMedCrossRefGoogle Scholar
  177. 177.
    Zhao X, Wang C, Cui WG, Ma Q, Zhou WH. Fisetin exerts antihyperalgesic effect in a mouse model of neuropathic pain: engagement of spinal serotonergic system. Sci Rep. 2015;5:9043.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Hernandez-Leon A, Fernández-Guasti A, González-Trujano ME. Rutin antinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Eur J Pain. 2016;20(2):274–83.PubMedCrossRefGoogle Scholar
  179. 179.
    Cherng CH, Lee KC, Chien CC, Chou KY, Cheng YC, Hsin ST, Lee SO, Shen CH, Tsai RY, Wong CS. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J Formos Med Assoc. 2014;113(8):513–20.PubMedCrossRefGoogle Scholar
  180. 180.
    Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M. The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol. 2011;650(2–3):694–702.PubMedCrossRefGoogle Scholar
  181. 181.
    Bertozzi MM, Rossaneis AC, Fattori V, Longhi-Balbinot DT, Freitas A, Cunha FQ, Alves-Filho JC, Cunha TM, Casagrande R, Verri WA Jr. Diosmin reduces chronic constriction injury-induced neuropathic pain in mice. Chem Biol Interact. 2017;273:180–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Carballo-Villalobos AI, González-Trujano ME, Pellicer F, Alvarado-Vásquez N, López-Muñoz FJ. Central and peripheral anti-hyperalgesic effects of diosmin in a neuropathic pain model in rats. Biomed Pharmacother. 2018;97:310–20.PubMedCrossRefGoogle Scholar
  183. 183.
    Meotti FC, Luiz AP, Pizzolatti MG, Kassuya CA, Calixto JB, Santos AR. Analysis of the antinociceptive effect of the flavonoid myricitrin: evidence for a role of the L-arginine-nitric oxide and protein kinase C pathways. J Pharmacol Exp Ther. 2006;316(2):789–96.PubMedCrossRefGoogle Scholar
  184. 184.
    Córdova MM, Werner MF, Silva MD, Ruani AP, Pizzolatti MG, Santos AR. Further antinociceptive effects of myricitrin in chemical models of overt nociception in mice. Neurosci Lett. 2011;495(3):173–7.PubMedCrossRefGoogle Scholar
  185. 185.
    Zhu Q, Mao LN, Liu CP, Sun YH, Jiang B, Zhang W, Li JX. Antinociceptive effects of vitexin in a mouse model of postoperative pain. Sci Rep. 2016;6:19266.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Borghi SM, Carvalho TT, Staurengo-Ferrari L, Hohmann MS, Pinge-Filho P, Casagrande R, Verri WA Jr. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod. 2013;76(6):1141–9.PubMedCrossRefGoogle Scholar
  187. 187.
    Visnagri A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm Biol. 2014;52(7):814–28.PubMedCrossRefGoogle Scholar
  188. 188.
    Carballo-Villalobos AI, González-Trujano ME, Alvarado-Vázquez N, López-Muñoz FJ. Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacology. 2017;25(2):265–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Hara K, Haranishi Y, Terada T, Takahashi Y, Nakamura M, Sata T. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model. Pharmacol Biochem Behav. 2014;125:78–84.PubMedCrossRefGoogle Scholar
  190. 190.
    Liu M, Liao K, Yu C, Li X, Liu S, Yang S. Puerarin alleviates neuropathic pain by inhibiting neuroinflammation in spinal cord. Mediators Inflamm. 2014;2014:485927.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Chen L, Chen W, Qian X, Fang Y, Zhu N. Liquiritigenin alleviates mechanical and cold hyperalgesia in a rat neuropathic pain model. Sci Rep. 2014;4:5676.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Aswar M, Kute P, Mahajan S, Mahajan U, Nerurkar G, Aswar U. Protective effect of hesperetin in rat model of partial sciatic nerve ligation induced painful neuropathic pain: an evidence of anti-inflammatory and anti-oxidative activity. Pharmacol Biochem Behav. 2014;124:101–7.PubMedCrossRefGoogle Scholar
  193. 193.
    Park MK, Lee HJ, Choi JK, Kim HJ, Kang JH, Lee EJ, Kim YR, Kang JH, Yoo JK, Cho HY, Kim JK, Kim CH, Park JH, Lee CH. Novel anti-nociceptive effects of cardamonin via blocking expression of cyclooxygenase-2 and transglutaminase-2. Pharmacol Biochem Behav. 2014;118:10–5.PubMedCrossRefGoogle Scholar
  194. 194.
    Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, Israf DA, Ming-Tatt L. Cardamonin (2′,4′-dihydroxy-6′-methoxychalcone) isolated from Boesenbergia rotunda (L.) Mansf. inhibits CFA-induced rheumatoid arthritis in rats. Eur J Pharmacol. 2017;794:127–34.PubMedCrossRefGoogle Scholar
  195. 195.
    Sambasevam Y, Omar Farouk AA, Tengku Mohamad TA, Sulaiman MR, Bharatham BH, Perimal EK. Cardamonin attenuates hyperalgesia and allodynia in a mouse model of chronic constriction injury-induced neuropathic pain: Possible involvement of the opioid system. Eur J Pharmacol. 2017;796:32–8.PubMedCrossRefGoogle Scholar
  196. 196.
    Wang S, Zhai C, Zhang Y, Yu Y, Zhang Y, Ma L, Li S, Qiao Y. Cardamonin, a novel antagonist of hTRPA1 cation channel, reveals therapeutic mechanism of pathological pain. Molecules. 2016;21(9):E1145.PubMedCrossRefGoogle Scholar
  197. 197.
    Jiang W, Wang Y, Sun W, Zhang M. Morin suppresses astrocyte activation and regulates cytokine release in bone cancer pain rat models. Phytother Res. 2017;31(9):1298–304.PubMedCrossRefGoogle Scholar
  198. 198.
    Cao FL, Xu M, Wang Y, Gong KR, Zhang JT. Tanshinone IIA attenuates neuropathic pain via inhibiting glial activation and immune response. Pharmacol Biochem Behav. 2015;128:1–7.PubMedCrossRefGoogle Scholar
  199. 199.
    Sun S, Yin Y, Yin X, Cao F, Luo D, Zhang T, Li Y, Ni L. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund’s adjuvant (CFA)-induced inflammatory pain. Brain Res Bull. 2012;88(6):581–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Ren BX, Ji Y, Tang JC, Sun DP, Hui X, Yang DQ, Zhu XL. Effect of Tanshinone IIA intrathecal injections on pain and spinal inflammation in mice with bone tumors. Genet Mol Res. 2015;14(1):2133–8.PubMedCrossRefGoogle Scholar
  201. 201.
    Jiang J, Shen YY, Li J, Lin YH, Luo CX, Zhu DY. (+)-Borneol alleviates mechanical hyperalgesia in models of chronic inflammatory and neuropathic pain in mice. Eur J Pharmacol. 2015;757:53–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Zhou HH, Zhang L, Zhou QG, Fang Y, Ge WH. (+)-Borneol attenuates oxaliplatin-induced neuropathic hyperalgesia in mice. Neuroreport. 2016;27(3):160–5.PubMedCrossRefGoogle Scholar
  203. 203.
    Nishijima CM, Ganev EG, Mazzardo-Martins L, Martins DF, Rocha LR, Santos AR, Hiruma-Lima CA. Citral: a monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain. Eur J Pharmacol. 2014;736:16–25.PubMedCrossRefGoogle Scholar
  204. 204.
    Yang L, Li Y, Ren J, Zhu C, Fu J, Lin D, Qiu Y. Celastrol attenuates inflammatory and neuropathic pain mediated by cannabinoid receptor type 2. Int J Mol Sci. 2014;15(8):13637–48.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Popiolek-Barczyk K, Kolosowska N, Piotrowska A, Makuch W, Rojewska E, Jurga AM, Pilat D, Mika J. Parthenolide relieves pain and promotes M2 microglia/macrophage polarization in rat model of neuropathy. Neural Plast. 2015;2015:676473.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Dutra RC, Simão da Silva KA, Bento AF, Marcon R, Paszcuk AF, Meotti FC, Pianowski LF, Calixto JB. Euphol, a tetracyclic triterpene produces antinociceptive effects in inflammatory and neuropathic pain: the involvement of cannabinoid system. Neuropharmacology. 2012;63(4):593–605.PubMedCrossRefGoogle Scholar
  207. 207.
    Nieto FR, Cobos EJ, Entrena JM, Parra A, García-Granados A, Baeyens JM. Antiallodynic and analgesic effects of maslinic acid, a pentacyclic triterpenoid from Olea europaea. J Nat Prod. 2013;76(4):737–40.PubMedCrossRefGoogle Scholar
  208. 208.
    de Lima FO, Alves V, Barbosa Filho JM, Almeida JR, Rodrigues LC, Soares MB, Villarreal CF. Antinociceptive effect of lupeol: evidence for a role of cytokines inhibition. Phytother Res. 2013;27(10):1557–63.PubMedGoogle Scholar
  209. 209.
    Goldie M, Dolan S. Bilobalide, a unique constituent of Ginkgo biloba, inhibits inflammatory pain in rats. Behav Pharmacol. 2013;24(4):298–306.PubMedCrossRefGoogle Scholar
  210. 210.
    Katsuyama S, Kuwahata H, Yagi T, Kishikawa Y, Komatsu T, Sakurada T, Nakamura H. Intraplantar injection of linalool reduces paclitaxel-induced acute pain in mice. Biomed Res. 2012;33(3):175–81.PubMedCrossRefGoogle Scholar
  211. 211.
    Zulazmi NA, Gopalsamy B, Farouk AA, Sulaiman MR, Bharatham BH, Perimal EK. Antiallodynic and antihyperalgesic effects of zerumbone on a mouse model of chronic constriction injury-induced neuropathic pain. Fitoterapia. 2015;105:215–21.PubMedCrossRefGoogle Scholar
  212. 212.
    Zulazmi NA, Gopalsamy B, Min JC, Farouk AA, Sulaiman MR, Bharatham BH, Perimal EK. Zerumbone alleviates neuropathic pain through the involvement of l-arginine-nitric oxide-cGMP-K ATP channel pathways in chronic constriction injury in mice model. Molecules. 2017;22(4):E555.PubMedCrossRefGoogle Scholar
  213. 213.
    Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK. Zerumbone alleviates chronic constriction injury-induced allodynia and hyperalgesia through serotonin 5-HT receptors. Biomed Pharmacother. 2016;83:1303–10.PubMedCrossRefGoogle Scholar
  214. 214.
    Huang SY, Chen NF, Chen WF, Hung HC, Lee HP, Lin YY, Wang HM, Sung PJ, Sheu JH, Wen ZH. Sinularin from indigenous soft coral attenuates nociceptive responses and spinal neuroinflammation in carrageenan-induced inflammatory rat model. Mar Drugs. 2012;10(9):1899–919.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Huang Q, Mao XF, Wu HY, Li TF, Sun ML, Liu H, Wang YX. Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. J Neuroinflammation. 2016;13(1):214.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Lin YC, Huang SY, Jean YH, Chen WF, Sung CS, Kao ES, Wang HM, Chakraborty C, Duh CY, Wen ZH. Intrathecal lemnalol, a natural marine compound obtained from Formosan soft coral, attenuates nociceptive responses and the activity of spinal glial cells in neuropathic rats. Behav Pharmacol. 2011;22(8):739–50.PubMedCrossRefGoogle Scholar
  217. 217.
    Guida F, Luongo L, Aviello G, Palazzo E, De Chiaro M, Gatta L, Boccella S, Marabese I, Zjawiony JK, Capasso R, Izzo AA, de Novellis V, Maione S. Salvinorin A reduces mechanical allodynia and spinal neuronal hyperexcitability induced by peripheral formalin injection. Mol Pain. 2012;8:60.PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Wang ML, Yu G, Yi SP, Zhang FY, Wang ZT, Huang B, Su RB, Jia YX, Gong ZH. Antinociceptive effects of incarvillateine, a monoterpene alkaloid from Incarvillea sinensis, and possible involvement of the adenosine system. Sci Rep. 2015;5:16107.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Bhat RA, Lingaraju MC, Pathak NN, Kalra J, Kumar D, Kumar D, Tandan SK. Effect of ursolic acid in attenuating chronic constriction injury-induced neuropathic pain in rats. Fundam Clin Pharmacol. 2016;30(6):517–28.PubMedCrossRefGoogle Scholar
  220. 220.
    Zhang Y, Song C, Li H, Hou J, Li D. Ursolic acid prevents augmented peripheral inflammation and inflammatory hyperalgesia in high-fat diet-induced obese rats by restoring downregulated spinal PPARα. Mol Med Rep. 2016;13(6):5309–16.PubMedCrossRefGoogle Scholar
  221. 221.
    Gill N, Bijjem KR, Sharma PL. Anti-inflammatory and anti-hyperalgesic effect of all-trans retinoic acid in carrageenan-induced paw edema in Wistar rats: involvement of peroxisome proliferator-activated receptor-β/δ receptors. Indian J Pharmacol. 2013;45(3):278–82.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Maione F, Cantone V, Pace S, Chini MG, Bisio A, Romussi G, Pieretti S, Werz O, Koeberle A, Mascolo N, Bifulco G. Anti-inflammatory and analgesic activity of carnosol and carnosic acid in vivo and in vitro and in silico analysis of their target interactions. Br J Pharmacol. 2017;174(11):1497–508.PubMedCrossRefGoogle Scholar
  223. 223.
    Wang YW, Zhang X, Chen CL, Liu QZ, Xu JW, Qian QQ, Li WY, Qian YN. Protective effects of Garcinol against neuropathic pain - Evidence from in vivo and in vitro studies. Neurosci Lett. 2017;647:85–90.PubMedCrossRefGoogle Scholar
  224. 224.
    Ahn EJ, Choi GJ, Kang H, Baek CW, Jung YH, Woo YC, Bang SR. Antinociceptive Effects of Ginsenoside Rg3 in a Rat Model of Incisional Pain. Eur Surg Res. 2016;57(3–4):211–23.PubMedCrossRefGoogle Scholar
  225. 225.
    Chen SD, Ji BB, Yan YX, He X, Han KY, Dai QX, Zhang MX, Mo YC, Wang JL. Carnosic acid attenuates neuropathic pain in rat through the activation of spinal sirtuin1 and down-regulation of p66shc expression. Neurochem Int. 2016;93:95–102.PubMedCrossRefGoogle Scholar
  226. 226.
    Andoh T, Kobayashi N, Uta D, Kuraishi Y. Prophylactic topical paeoniflorin prevents mechanical allodynia caused by paclitaxel in mice through adenosine A1 receptors. Phytomedicine. 2017;25:1–7.PubMedCrossRefGoogle Scholar
  227. 227.
    Zhu Q, Sun Y, Yun X, Ou Y, Zhang W, Li JX. Antinociceptive effects of curcumin in a rat model of postoperative pain. Sci Rep. 2014;4:4932.PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Xiao L, Ding M, Fernandez A, Zhao P, Jin L, Li X. Curcumin alleviates lumbar radiculopathy by reducing neuroinflammation, oxidative stress and nociceptive factors. Eur Cell Mater. 2017;33:279–93.PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Ceyhan D, Kocman AE, Yildirim E, Ozatik O, Aydin S, Aydan K. Comparison of the effects of curcumin, tramadol and surgical treatments on neuropathic pain induced by chronic constriction injury in rat. Turk Neurosurg. 2017. Scholar
  230. 230.
    Das L, Vinayak M. Anti-carcinogenic action of curcumin by activation of antioxidant defense system and inhibition of NF -κB signaling in lymphoma-bearing mice. Bioscience Rep. 2012;32:161–70.CrossRefGoogle Scholar
  231. 231.
    Das L, Vinayak M. Curcumin attenuates carcinogenesis by down regulating proinflammatory cytokine interleukin-1 (IL-1α and IL-1β) via modulation of AP-1 and NF-IL6 in lymphoma bearing mice. Int Immunopharmacol. 2014;20(1):141–7.PubMedCrossRefGoogle Scholar
  232. 232.
    Das L, Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling and modulation of inflammation in prevention of cancer. PLoS One. 2015;10(4):e0124000.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Chen JJ, Dai L, Zhao LX, Zhu X, Cao S, Gao YJ. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis. Sci Rep. 2015;5:10278.PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Sharma S, Kulkarni SK, Agrewala JN, Chopra K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol. 2006; 536:256–61.PubMedCrossRefGoogle Scholar
  235. 235.
    Kuptniratsaikul V, Dajpratham P, Taechaarpornkul W, Buntragulpoontawee M, Lukkanapichonchut P, Chootip C, Saengsuwan J, Tantayakom K, Laongpech S. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin Interv Aging. 2014;9:451–8.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Arora R, Kuhad A, Kaur IP, Chopra K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain. 2015;19(7):940–52.PubMedCrossRefGoogle Scholar
  237. 237.
    Pieretti S, Ranjan AP, Di Giannuario A, Mukerjee A, Marzoli F, Di Giovannandrea R, Vishwanatha JK. Curcumin-loaded Poly (d, l-lactide-co-glycolide) nanovesicles induce antinociceptive effects and reduce pronociceptive cytokine and BDNF release in spinal cord after acute administration in mice”. Colloids Surf B Biointerfaces. 2017;158:379–86.PubMedCrossRefGoogle Scholar
  238. 238.
    Russo GL. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem Pharmacol. 2007;74:533–44.PubMedCrossRefGoogle Scholar
  239. 239.
    Takeda M, Takehana S, Sekiguchi K, Kubota Y, Shimazu Y. Modulatory mechanism of nociceptive neuronal activity by dietary constituent resveratrol. Int J Mol Sci 2016;17(10):E1702.PubMedCrossRefGoogle Scholar
  240. 240.
    Takehana S, Sekiguchi K, Inoue M, Kubota Y, Ito Y, Yui K, Shimazu Y, Takeda M. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats. Brain Res Bull. 2016;120:117–22.PubMedCrossRefGoogle Scholar
  241. 241.
    Takehana S, Kubota Y, Uotsu N, Yui K, Iwata K, Shimazu Y, Takeda M. The dietary constituent resveratrol suppresses nociceptive neurotransmission via the NMDA receptor. Mol Pain. 2017;13:1744806917697010.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Sekiguchi K, Takehana S, Shibuya E, Matsuzawa N, Hidaka S, Kanai Y, Inoue M, Kubota Y, Shimazu Y, Takeda M. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Mol Pain. 2016;12:1744806916643082.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Gupta Y, Sharma M, Briyal S. Antinociceptive effect of trans-resveratrol in rats: Involvement of an opioidergic mechanism. Methods Find Exp Clin Pharmacol. 2004;26:667–72.PubMedCrossRefGoogle Scholar
  244. 244.
    Doyle T, Bryant L, Muscoli C, Cuzzocrea S, Esposito E, Chen Z, Salvemini D. Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance. Neurosci lett. 2010;483(2):85–9.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Peres Klein C, Rodrigues Cintra M, Binda N, Montijo Diniz D, Gomez MV, Souto AA, de Souza AH. Coadministration of resveratrol and rice oil mitigates nociception and oxidative state in a mouse fibromyalgia-like model. Pain Res Treat. 2016;2016:3191638.PubMedPubMedCentralGoogle Scholar
  246. 246.
    Wang ZM, Chen YC, Wang DP. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats. Biomed Pharmacother. 2016;83:763–70.PubMedCrossRefGoogle Scholar
  247. 247.
    Han Y, Jiang C, Tang J, Wang C, Wu P, Zhang G, Liu W, Jamangulova N, Wu X, Song X. Resveratrol reduces morphine tolerance by inhibiting microglial activation via AMPK signalling. Eur J Pain. 2014;18(10):1458–70.PubMedCrossRefGoogle Scholar
  248. 248.
    Wang LL, Shi DL, Gu HY, Zheng MZ, Hu J, Song XH, Shen YL, Chen YY. Resveratrol attenuates inflammatory hyperalgesia by inhibiting glial activation in mice spinal cords. Mol Med Rep. 2016;13(5):4051–7.PubMedCrossRefGoogle Scholar
  249. 249.
    Maurya AK, Vinayak M. Quercetin attenuates cell survival, inflammation, and angiogenesis via modulation of AKT signaling in murine T-Cell lymphoma. Nutr Cancer. 2017;69(3):470–80.PubMedCrossRefGoogle Scholar
  250. 250.
    Lee ES, Lee HE, Shin JY, Yoon S, Moon JO. The flavonoid quercetin inhibits dimethylnitrosamine-induced liver damage in rats. J Pharm Pharmacol. 2003;55:1169–74.PubMedCrossRefGoogle Scholar
  251. 251.
    Narenjkar J, Roghani M, Alambeygi H, Sedaghati F. The effect of the flavonoid quercetin on pain sensation in diabetic rats. Basic clin neurosci. 2011;2(3):51–7.Google Scholar
  252. 252.
    Russo GL, Russo M, Spagnuolo C, Tedesco I, Bilotto S, Iannitti R, Palumbo R. Quercetin: a pleiotropic kinase inhibitor against cancer. Cancer Treat Res. 2014;159:185–205.PubMedCrossRefGoogle Scholar
  253. 253.
    Filho AW, Filho VC, Olinger L, de Souza MM. Quercetin: further investigation of its antinociceptive properties and mechanisms of action. Arch Pharm Res. 2008;31:713–21.PubMedCrossRefGoogle Scholar
  254. 254.
    Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, Napimoga MH, Pitol DL, Issa JPM, Fukada SY, Casagrande R, Verri WA Jr. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J Nutr Biochem. 2017;53:81–95.PubMedCrossRefGoogle Scholar
  255. 255.
    Britti D, Crupi R, Impellizzeri D, Gugliandolo E, Fusco R, Schievano C, Morittu VM, Evangelista M, Di Paola R, Cuzzocrea. S.A novel composite formulation of palmitoylethanolamide and quercetin decreases inflammation and relieves pain in inflammatory and osteoarthritic pain models. BMC Vet Res. 2017;13(1):229.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, Domiciano TP, Vicentini FTMC., Camilios-Neto D, Pavanelli WR, Pinge-Filho P, Amaral FA, Teixeira MM, Casagrande R, Verri WA Jr. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology. 2017. Scholar
  257. 257.
    Maioli NA, Zarpelon AC, Mizokami SS, Calixto-Campos C, Guazelli CF, Hohmann MS, Pinho-Ribeiro FA, Carvalho TT, Manchope MF, Ferraz CR, Casagrande R, Verri WA Jr. The superoxide anion donor, potassium superoxide, induces pain and inflammation in mice through production of reactive oxygen species and cyclooxygenase-2. Braz J Med Biol Res. 2015;48(4):321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Jeong KH, Lee DS, Kim SR. Effects of eugenol on granule cell dispersion in a mouse model of temporal lobe epilepsy. Epilepsy Res. 2015;115:73–6.PubMedCrossRefGoogle Scholar
  259. 259.
    Wang ZJ, Tabakoff B, Levinson SR, Heinbockel T. Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions. Acta Pharmacol Sin. 2015;36(7):791–9.PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Garabadu D, Shah A, Ahmad A, Joshi VB, Saxena B, Palit G, Krishnamurthy S. Eugenol as an anti-stress agent: modulation of hypothalamic-pituitary-adrenal axis and brain monoaminergic systems in a rat model of stress. Stress. 2011;14(2):145–55.PubMedCrossRefGoogle Scholar
  261. 261.
    Gülçin İ. Antioxidant activity of eugenol: a structure-activity relationship study. J Med Food. 2011;14(9):975–85.PubMedCrossRefGoogle Scholar
  262. 262.
    Fujisawa S, Atsumi T, Kadoma Y, Sakagami H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology. 2002;177:39–54.PubMedCrossRefGoogle Scholar
  263. 263.
    Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG. Activity and mechanisms of action of selected biocidal agents on grampositive and negative bacteria. J Appl Microbiol. 2003;94:240–7.PubMedCrossRefGoogle Scholar
  264. 264.
    Lee I, Kim HK, Kim JH, Chung K, Chung JM. The role of reactive oxygen species in capsaicin-induced mechanical hyperalgesia and in the activities of dorsal horn neurons. Pain. 2007;13:9–17.CrossRefGoogle Scholar
  265. 265.
    Lionnet L, Beaudry F, Vachon P. Intrathecal eugenol administration alleviates neuropathic pain in male Sprague-Dawley rats. Phytother Res. 2010;24(11):1645–53.PubMedCrossRefGoogle Scholar
  266. 266.
    Ferland CE, Beaudry F, Vachon P. Antinociceptive effects of eugenol evaluated in a monoiodoacetate-induced osteoarthritis rat model. Phytother Res. 2012;26(9):1278–85.PubMedCrossRefGoogle Scholar
  267. 267.
    Moreira-Lobo DC, Linhares-Siqueira ED, Cruz GM, Cruz JS, Carvalho-de-Souza JL, Lahlou S, Coelho-de-Souza AN, Barbosa R, Magalhães PJ, Leal-Cardoso JH. Eugenol modifies the excitability of rat sciatic nerve and superior cervical ganglion neurons. Neurosci Lett. 2010;472:220–4.PubMedCrossRefGoogle Scholar
  268. 268.
    Wie MB, Won MH, Lee KH, Shin JH, Lee JC, Suh HW, Song DK, Kim YH. Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci Lett. 1997;225:93–6.PubMedCrossRefGoogle Scholar
  269. 269.
    Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci. 2006;78:2073–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ajeet Kumar Singh
    • 1
    • 2
  • Sanjay Kumar
    • 1
  • Manjula Vinayak
    • 1
  1. 1.Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Zoology, CMP Degree CollegeUniversity of AllahabadAllahabadIndia

Personalised recommendations