Skip to main content
Log in

Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Microglial activation is one of the causative factors of neuroinflammation in cerebral ischemia/reperfusion (IR). Sphingosine kinase 1 (Sphk1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P), plays an important role in the regulation of proinflammatory cytokines in activated microglia. Recent research demonstrated that S1P increased IL-17A-secretion and then worsened CNS (central nervous system) inflammation. Thus, in the present study, we sought to use microglial cells as the object of study to discuss the molecular mechanisms in Sphk1/S1P-regulated IL-17A-secretion in IR.

Methods

We used immunofluorescence and confocal microscopy to detect whether Sphk1 is expressed in microglia after cerebral IR or oxygen-glucose deprivation (OGDR). Western blot analysis was used to estimate the total Sphk1 protein level at different time points after OGDR. To detect cytokine secretion in microglial supernatants in response to OGDR, we measured the concentration of IL-17A in the culture supernatants using an enzyme-linked immunosorbent assay (ELISA). To evaluate whether microglia subjected to OGDR exhibited neuronal injury, we used a commercially available terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) kit to detect apoptotic neurons.

Results

Sphk1 was expressed in microglia in response to cerebral IR or OGDR at appointed time. Pre-injection with PF-543, an inhibitor of Sphk1, before IR clearly reduced the expression of Sphk1 in microglia relative to brain IR alone. The number of TUNEL-positive neurons was also decreased in the PF-543-pretreated animals before IR compared to the animals with IR alone. When S1P was administered in OGDR microglia, IL-17A expression and neuronal apoptosis were increased compared to OGDR alone and the administration of S1P alone. ELISA further confirmed the above results. Moreover, the inhibition of Sphk1 by siRNA reduced IL-17A production and relieved neuronal apoptosis in OGDR microglia.

Conclusion

These results indicated that Sphk1/S1P regulates the expression of IL-17A in activated microglia, inducing neuronal apoptosis in cerebral ischemia/reperfusion. The microglial Sphk1/S1P pathway may thus be a potential therapeutic target to control neuroinflammation in brain IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Sphk1:

Sphingosine kinase 1

S1P:

Sphingosine-1-phosphate

IL-17A:

Interleukin-17A

IRI:

Ischemia/reperfusion injury

CNS:

Central nervous system

OGDR:

Oxygen-glucose deprivation reperfusion

NO:

Nitric oxide

TNF-α:

Tumor necrosis factor-α

References

  1. Stoll G, Kleinschnitz C, Nieswandt B. Combating innate inflammation a new paradigm for acute treatment of stroke? Ann N Y Acad Sci. 2010;1207:149–54.

    Article  CAS  PubMed  Google Scholar 

  2. Becker KJ. Modulation of the postischemic immune response to improve stroke outcome. Stroke. 2010; 41: S75–8.

  3. Lakhan SE, Kirchgessner A, Hofer MJ. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med. 2009;17(7):97.

    Article  Google Scholar 

  4. Yasuda Y, Shimoda T, Uno K, Tateishi N, Furuya S, Tsuchihashi Y, Kawai Y, Naruse S, Fujita S. Temporal and sequential changes of glial cells and cytokine expression during neuronal degeneration after transient global ischemia in rats. J Neuroinflammation. 2011;8:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA. Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia. 2005;50(1):21–31.

    Article  PubMed  Google Scholar 

  6. Lv M, Liu Y, Zhang J, Sun L, Liu Z, Zhang S, Wang B, Su D, Su Z. Roles of inflammation response in microglia cell through Toll-like receptors 2/interleukin-23/interleukin-17 pathway in cerebral ischemia/reperfusion injury. Neuroscience. 2011;176:162–72.

    Article  CAS  PubMed  Google Scholar 

  7. Czubowicz K, Strosznajder R. Ceramide in the molecular mechanisms of neuronal cell death The role of sphingosine-1-phosphate. Mol Neurobiol. 2014;50(1):26–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anelli V, Bassi R, Tettamanti G, Viani P, Riboni L. Extracellular release of newly synthesized sphingosine-1-phosphate by cerebellar granule cells and astrocytes. J Neurochem Mar. 2005;92(5):1204–15.

    Article  CAS  Google Scholar 

  9. Kajimoto T, Okada T, Yu H, Goparaju SK, Jahangeer S, Nakamura S. Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol Cell Biol. 2007;27(9):3429–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nayak D, Huo Y, Kwang WX, Pushparaj PN, Kumar SD, Ling EA, Dheen ST. Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience. 2010;166(1):132–44.

    Article  CAS  PubMed  Google Scholar 

  11. Pilorget A, Demeule M, Barakat S, Marvaldi J, Luis J, Béliveau R. Modulation of P-glycoprotein function by sphingosine kinase-1 in brain endothelial cells. J Neurochem. 2007;100(5):1203–10.

    Article  CAS  PubMed  Google Scholar 

  12. Saini HS, Coelho RP, Goparaju SK, Jolly PS, Maceyka M, Spiegel S, Sato-Bigbee C. Novel role of sphingosine kinase 1 as a mediator of neurotrophin-3 action in oligodendrocyte progenitors. J Neurochem. 2005;95(5):1298–310.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng S, Wei S, Wang X, Xu Y, Xiao Y, Liu H, Jia J, Cheng J. Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia. Exp Neurol. 2015;272:160–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lin H, Baby N, Lu J, Kaur C, Zhang C, Xu J, Ling EA, Dheen ST. Expression of sphingosine kinase 1 in amoeboid microglial cells in the corpus callosum of postnatal rats. J Neuroinflammation. 2011;8:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada T, Kajimoto T, Jahangeer S, Nakamura S. Sphingosine Kinase/sphingosine 1-phosphate signalling in central nervous system. Cell Signal. 2009;21:7–13.

    Article  CAS  PubMed  Google Scholar 

  16. Kimura A, Ohmori T, Kashiwakura Y, Ohkawa R, Madoiwa S. Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke. 2008;39:3411–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ohama T, Okada M, Murata T, Brautigan DL, Hori M. Sphingosine-1-phosphate enhances IL-1{beta}-induced COX-2 expression in mouse intestinal subepithelial myofibroblasts. Am J Physiol Gastrointest Liver Physiol. 2008;295:G766–75.

    Article  CAS  PubMed  Google Scholar 

  18. Neubauer HA, Pitson SM. Roles, regulation and inhibitors of sphingosine kinase2. FEBS J. 2013;280:5317–36.

    Article  CAS  PubMed  Google Scholar 

  19. Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11(6):403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B III, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, Villarino AV, Huang Q, Yoshimura A, Sehy D, Saris CJ, O’Shea JJ, Hennighausen L, Ernst M, Hunter CA. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7(9):937–45.

    Article  CAS  PubMed  Google Scholar 

  22. Schulze-Luehrmann J, Ghosh S. Antigen-receptor signaling to nuclear factor kappa B. Immunity. 2006;25(5):701–15.

    Article  CAS  PubMed  Google Scholar 

  23. Garris CS, Wu L, Acharya S, Arac A, Blaho VA, Huang Y, Moon BS, Axtell RC, Ho PP, Steinberg GK, Lewis DB, Sobel RA, Han DK, Steinman L, Snyder MP, Hla T, Han MH. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol. 2013;14(11):1166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21:467–76.

    Article  CAS  PubMed  Google Scholar 

  25. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ, Iwakura Y, Yoshimura A. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med. 2009;15:946–50.

    Article  CAS  PubMed  Google Scholar 

  26. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O, Thom V, Friese MA, Prinz I, Holscher C, Glatzel M, Korn T, Gerloff C, Tolosa E, Magnus T. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood. 2012;120:3793–802.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Mao X, Zhou T, Cheng X, Lin Y. IL-17A contributes to brain ischemia reperfusion injury through calpain-TRPC6 pathway in mice. Neuroscience. 2014;274:419–28.

    Article  CAS  PubMed  Google Scholar 

  28. Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW, Hall T, Chrencik J, Kraus M, Cronin CN, Saabye M, Highkin MK, Broadus R, Ogawa S, Cukyne K, Zawadzke LE, Peterkin V, Iyanar K, Scholten JA, Wendling J, Fujiwara H, Nemirovskiy O, Wittwer AJ, Nagiec MM. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J. 2012;444(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  29. Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S. A novel gene iba1 in themajor histocompatibility complex class III region encoding an EF hand rotein expressed in a monocytic lineage. Biochem Biophys Res Commun. 1996;224:855–62.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang RL, Chopp M, Chen H, Garcia JH. Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci. 1994;125:3–10.

    Article  CAS  PubMed  Google Scholar 

  31. Liao JJ, Huang MC, Goetzl EJ. Cutting edge: alternative signaling of Th17 cell development by sphingosine 1-phosphate. J Immunol. 2007;178(9):5425–8.

    Article  CAS  PubMed  Google Scholar 

  32. Charriaut-Marlangue C, Margaill I, Represa A, Popovici T, Plotkine M, Ben-Ari Y. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab. 1996;16:186–94.

    Article  CAS  PubMed  Google Scholar 

  33. Matsui T, Mori T, Tateishi N, Kagamiishi Y, Satoh S, Katsube N, Morikawa E, Morimoto T, Ikuta F, Asano T. Astrocytic activation and delayed infarct expansion after permanent focal ischemia in rats. Part I: enhanced astrocytic synthesis of s-100beta in the periinfarct area precedes delayed infarct expansion. J Cereb Blood Flow Metab. 2002;22:711–22.

    Article  CAS  PubMed  Google Scholar 

  34. Maines LW, Fitzpatrick LR, French KJ, Zhuang Y, Xia Z, Keller SN, Upson JJ, Smith CD. Suppression of ulcerative colitis in mice by orally available inhibitors of sphingosine kinase. Dig Dis Sci. 2008;53(4):997–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Niwa M, Kozawa O, Matsuno H, Kanamori Y, Hara A, Uematsu T. Tumor necrosis factor-alpha-mediated signal transduction in human neutrophils: involvement of sphingomyelin metabolites in the priming effect of TNF-alpha on the Fmlp-stimulated superoxide production. Life Sci. 2000;66:245–56.

    Article  CAS  PubMed  Google Scholar 

  36. Czeh M, Gressens P, Kaindl AM. The yin and yang of microglia. Dev Neurosci. 2011;33(3–4):199–209.

    Article  CAS  PubMed  Google Scholar 

  37. Patel AR, Ritzel R, McCullough LD, Liu F. Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol. 2013;5:73–90.

    PubMed  PubMed Central  Google Scholar 

  38. Pfeilschifter W, Czech-Zechmeister B, Sujak M, Mirceska A, Koch A, Rami A, Steinmetz H, Foerch C, Huwiler A, Pfeilschifter J. Activation of sphingosine kinase 2 is an endogenous protective mechanism in cerebral ischemia. Biochem Biophys Res Commun. 2011;413:212–7.

    Article  CAS  PubMed  Google Scholar 

  39. Wacker BK, Park TS, Gidday JM. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke. 2009;40:3342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wacker BK, Perfater JL, Gidday JM. Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. J Neurochem. 2012;123:954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yung LM, Wei Y, Qin T, Wang Y, Smith CD, Waeber C. Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke. 2012;43:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blondeau N, Lai Y, Tyndall S, Popolo M, Topalkara K, Pru JK, Zhang L, Kim H, Liao JK, Ding K, Waeber C. Distribution of sphingosine kinase activity and mRNA in rodent brain. J Neurochem. 2007;103:509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasegawa Y, Suzuki H, Altay O, Rolland W, Zhang JH. Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Transl Stroke Res. 2013;4(5):524–32.

    Article  CAS  PubMed  Google Scholar 

  44. Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol Jan. 2012;22(1):50–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the fund of the First Affiliated Hospital of Harbin Medical University (2012BS003). We are grateful for the technical assistance of all members of the Department of Pharmacology of Harbin Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manhua Lv.

Additional information

Responsible Editor: Ji Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11_2016_939_MOESM1_ESM.jpg

Supplement 1. Identification of the purity of microglia cells. (a) Primary cultured microglia. (b) After purification, the microglial growth factor was added to cultured medium. (c) In addition the slide plate, microglia growth on glass slides. (d-f) Immunofluorescence images showed microglia was double-stained with Iba1 (red) and DAPI (blue). Confocal microscopy, scale bar: 100 μm (JPEG 1953 kb)

11_2016_939_MOESM2_ESM.jpg

Supplement 2. Identification of the purity of neurons. Primary cultured cells were double-stained with Neun (green) and DAPI (blue). Confocal microscopy, scale bar: 100 μm (JPEG 2163 kb)

11_2016_939_MOESM3_ESM.jpg

Supplement 3. Expression of EGFP on microglia subjected to SphK1 siRNA. Primary microglia transfected with SphK1 siRNA were culture for 48 h and stained with antibody against EGFP (green) and microglia (red). Confocal microscopy, scale bar: 100 μm (JPEG 745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, M., Zhang, D., Dai, D. et al. Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion. Inflamm. Res. 65, 551–562 (2016). https://doi.org/10.1007/s00011-016-0939-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0939-9

Keywords

Navigation