Skip to main content
Log in

Estrogen suppresses heptatic IκB expression during short-term alcohol exposure

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To assess the effects of sex steroids on hepatic inflammatory pathways in short-term chronically ethanol-fed rats.

Methods

Ovariectomized female Wistar rats (8–12 weeks old, n = 8 per treatment group) were implanted with osmotic pumps releasing 17β-estradiol (20 μg/24 h) or testosterone (25 μg/24 h) and fed liquid diets with or without ethanol (8 % w/v) for two weeks. Hepatic expression of IκBα/β, TNF-α, and IL-6 mRNA was examined by real-time PCR. Liver (nuclear) NFκB, IκBα and β, IL-6, and IL-6Rα protein expression was examined by enzyme-linked immunosorbent assay (ELISA) or Western blot.

Results

Estrogen alone induced greater steatosis, NFκB translocation, TNF-α mRNA, as well as IL-6, and IL-6R protein. Alcohol consumption along with estrogen treatment further increased steatosis, NFκB translocation, TNF-α mRNA, and IL-6 protein. Conversely, neither estrogen nor ethanol consumption induced IκBα or IκBβ mRNA or protein expression, while testosterone robustly induced these inhibitory proteins regardless of treatment.

Conclusions

Estrogen exposure enhances alcohol-induced liver inflammation, and the anti-inflammatory effects of testosterone in the liver might be related to induction of IκB. Elevated inflammation in response to estrogen may overwhelm the regenerative influence of IL-6 in liver, leading to increased steatosis and greater liver damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McClain CJ, Song Z, Barve SS, Hill DB, Deaciuc I. Recent advances in alcoholic liver disease. IV. Dysregulated cytokine metabolism in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2004;287:G497–502.

    Article  PubMed  CAS  Google Scholar 

  2. Rao RK, Seth A, Sheth P. Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol. 2004;286:G881–4.

    Article  PubMed  CAS  Google Scholar 

  3. You M, Crabb DW. Recent advances in alcoholic liver disease II. Minireview: molecular mechanisms of alcoholic fatty liver. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1–6.

    Article  PubMed  CAS  Google Scholar 

  4. Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol. 2004;287:G310–4.

    Article  PubMed  CAS  Google Scholar 

  5. Grossman CJ, Nienaber M, Mendenhall CL, Hurtubise P, Roselle GA, Rouster S, et al. Sex differences and the effects of alcohol on immune response in male and female rats. Alcohol Clin Exp Res. 1993;17:832–40.

    Article  PubMed  CAS  Google Scholar 

  6. Spitzer JA, Zhang P, Bagby GJ, Stouwe CV, Nelson S. Sex differences in the modulation by ethanol of lung chemotaxis. Alcohol. 2002;28:95–102.

    Article  PubMed  CAS  Google Scholar 

  7. Iimuro Y, Frankenberg MV, Arteel GE, Bradford BU, Wall CA, Thurman RG. Female rats exhibit greater susceptibility to early alcohol-induced liver injury than males. Am J Physiol. 1997;272:G1186–94.

    PubMed  CAS  Google Scholar 

  8. Thurman RG. Sex-related liver injury due to alcohol involves activation of Kupffer cells by endotoxin. Can J Gastroenterol. 2000;14(Suppl D):129D–35D.

    PubMed  Google Scholar 

  9. Thurman RG, Bradford BU, Iimuro Y, Knecht KT, Connor HD, Adachi Y, et al. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: studies in female and male rats. J Nutr. 1997;127:903S–6S.

    PubMed  CAS  Google Scholar 

  10. Yin M, Gabele E, Wheeler MD, Connor H, Bradford BU, Dikalova A, et al. Alcohol-induced free radicals in mice: direct toxicants or signaling molecules? Hepatology. 2001;34:935–42.

    Article  PubMed  CAS  Google Scholar 

  11. Kono H, Bradford BU, Rusyn I, Fujii H, Matsumoto Y, Yin M, et al. Development of an intragastric enteral model in the mouse: studies of alcohol-induced liver disease using knockout technology. J Hepatobiliary Pancreat Surg. 2000;7:395–400.

    Article  PubMed  CAS  Google Scholar 

  12. Wheeler MD, Kono H, Yin M, Nakagami M, Uesugi T, Arteel GE, et al. The role of Kupffer cell oxidant production in early ethanol-induced liver disease. Free Radic Biol Med. 2001;31:1544–9.

    Article  PubMed  CAS  Google Scholar 

  13. Enomoto N, Ikejima K, Yamashina S, Hirose M, Shimizu H, Kitamura T, et al. Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcohol Clin Exp Res. 2001;25:51S–4S.

    Article  PubMed  CAS  Google Scholar 

  14. Wheeler MD, Nakagami M, Bradford BU, Uesugi T, Mason RP, Connor HD, et al. Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. J Biol Chem. 2001;276:36664–72.

    Article  PubMed  CAS  Google Scholar 

  15. Su GL, Klein RD, Aminlari A, Zhang HY, Steinstraesser L, Alarcon WH, et al. Kupffer cell activation by lipopolysaccharide in rats: role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology. 2000;31:932–6.

    Article  PubMed  CAS  Google Scholar 

  16. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    Article  PubMed  CAS  Google Scholar 

  17. Kono H, Wheeler MD, Rusyn I, Lin M, Seabra V, Rivera CA, et al. Gender differences in early alcohol-induced liver injury: role of CD14, NF-kappaB, and TNF-alpha. Am J Physiol Gastrointest Liver Physiol. 2000;278:G652–61.

    PubMed  CAS  Google Scholar 

  18. Ganesan K, Selvam R, Abhirami R, Raju KV, Manohar BM, Puvanakrishnan R. Gender differences and protective effects of testosterone in collagen induced arthritis in rats. Rheumatol Int. 2008;28:345–53.

    Article  PubMed  CAS  Google Scholar 

  19. Gilliver SC, Ashworth JJ, Mills SJ, Hardman MJ, Ashcroft GS. Androgens modulate the inflammatory response during acute wound healing. J Cell Sci. 2006;119:722–32.

    Article  PubMed  CAS  Google Scholar 

  20. Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C. Natural androgens inhibit male atherosclerosis: a study in castrated, cholesterol-fed rabbits. Circ Res. 1999;84:813–9.

    Article  PubMed  CAS  Google Scholar 

  21. Yin M, Ikejima K, Wheeler MD, Bradford BU, Seabra V, Forman DT, et al. Estrogen is involved in early alcohol-induced liver injury in a rat enteral feeding model. Hepatology. 2000;31:117–23.

    Article  PubMed  CAS  Google Scholar 

  22. Gardner DG, Shoback D. Appendix: normal hormone reference ranges. In: Gardner DG, Shoback D, editors. Greenspan’s basic & clinical endocrinology. 9th ed. New York: McGraw-Hill; 2011.

  23. Reinke LA, Moore DR, Nanji AA. Pronounced hepatic free radical formation precedes pathological liver injury in ethanol-fed rats. Alcohol Clin Exp Res. 2000;24:332–5.

    Article  PubMed  CAS  Google Scholar 

  24. Gallucci RM, Sloan DK, O’Dell SJ, Reinke LA. Differential expression of liver interleukin-6 receptor-alpha in female versus male ethanol-consuming rats. Alcohol Clin Exp Res. 2004;28:365–73.

    Article  PubMed  CAS  Google Scholar 

  25. Kamat CD, Thorpe JE, Shenoy SS, Ceriello A, Green DE, Warnke LA, et al. A long-term “memory” of HIF induction in response to chronic mild decreased oxygen after oxygen normalization. BMC Cardiovasc Disord. 2007;7:4.

    Article  PubMed  Google Scholar 

  26. Uesugi T, Froh M, Arteel GE, Bradford BU, Gabele E, Wheeler MD, et al. Delivery of IkappaB super repressor gene with adenovirus reduces early alcohol-induced liver injury in rats. Hepatology. 2001;34:1149–57.

    Article  PubMed  CAS  Google Scholar 

  27. Jokelainen K, Reinke LA, Nanji AA. Nf-kappab activation is associated with free radical generation and endotoxemia and precedes pathological liver injury in experimental alcoholic liver disease. Cytokine. 2001;16:36–9.

    Article  PubMed  CAS  Google Scholar 

  28. Tsukamoto H, Lin M, Ohata M, Giulivi C, French SW, Brittenham G. Iron primes hepatic macrophages for NF-kappaB activation in alcoholic liver injury. Am J Physiol. 1999;277:G1240–50.

    PubMed  CAS  Google Scholar 

  29. Hanck C, Rossol S, Bocker U, Tokus M, Singer MV. Presence of plasma endotoxin is correlated with tumour necrosis factor receptor levels and disease activity in alcoholic cirrhosis. Alcohol Alcohol. 1998;33:606–8.

    PubMed  CAS  Google Scholar 

  30. Earnest DL, Abril ER, Jolley CS, Martinez F. Ethanol and diet-induced alterations in Kupffer cell function. Alcohol. 1993;28:73–83.

    PubMed  CAS  Google Scholar 

  31. Enomoto N, Ikejima K, Bradford B, Rivera C, Kono H, Brenner DA, et al. Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology. 1998;115:443–51.

    Article  PubMed  CAS  Google Scholar 

  32. Iimuro Y, Gallucci RM, Luster MI, Kono H, Thurman RG. Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology. 1997;26:1530–7.

    Article  PubMed  CAS  Google Scholar 

  33. Mackiewicz A, Schooltink H, Heinrich PC, Rose-John S. Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J Immunol. 1992;149:2021–7.

    PubMed  CAS  Google Scholar 

  34. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6- deficient mice. Science. 1996;274:1379–83.

    Article  PubMed  CAS  Google Scholar 

  35. Spitzer JA, Zhang P. Gender differences in neutrophil function and cytokine-induced neutrophil chemoattractant generation in endotoxic rats. Inflammation. 1996;20:485–98.

    Article  PubMed  CAS  Google Scholar 

  36. Spitzer JA, Zhang P. Gender differences in phagocytic responses in the blood and liver, and the generation of cytokine-induced neutrophil chemoattractant in the liver of acutely ethanol-intoxicated rats. Alcohol Clin Exp Res. 1996;20:914–20.

    Article  PubMed  CAS  Google Scholar 

  37. Kawaratani H, Tsujimoto T, Kitazawa T, Yoshiji H, Uemura M, Fukui H. Therapeutic effects of cytokine modulator Y-40138 in the rat alcoholic liver disease model. J Gastroenterol Hepatol. 2011;26:775–83.

    Article  PubMed  CAS  Google Scholar 

  38. Mak KM, Ren C, Ponomarenko A, Cao Q, Lieber CS. Adipose differentiation-related protein is a reliable lipid droplet marker in alcoholic fatty liver of rats. Alcohol Clin Exp Res. 2008;32:683–9.

    Article  PubMed  CAS  Google Scholar 

  39. Dan Z, Popov Y, Patsenker E, Preimel D, Liu C, Wang XD, et al. Hepatotoxicity of alcohol-induced polar retinol metabolites involves apoptosis via loss of mitochondrial membrane potential. FASEB J Off Publ Fed Am Soc Exp Biol. 2005;19:845–7.

    CAS  Google Scholar 

  40. Shimizu I, Ito S. Protection of estrogens against the progression of chronic liver disease. Hepatol Res. 2007;37:239–47.

    Article  PubMed  CAS  Google Scholar 

  41. Cole LK, Jacobs RL, Vance DE. Tamoxifen induces triacylglycerol accumulation in the mouse liver by activation of fatty acid synthesis. Hepatology. 2010;52:1258–65.

    Article  PubMed  CAS  Google Scholar 

  42. Hong J, Holcomb VB, Kushiro K, Nunez NP. Estrogen inhibits the effects of obesity and alcohol on mammary tumors and fatty liver. Int J Oncol. 2011;39:1443–53.

    PubMed  CAS  Google Scholar 

  43. Lee MH, Kim JW, Kim JH, Kang KS, Kong G, Lee MO. Gene expression profiling of murine hepatic steatosis induced by tamoxifen. Toxicol Lett. 2010;199:416–24.

    Article  PubMed  CAS  Google Scholar 

  44. Kamada Y, Kiso S, Yoshida Y, Chatani N, Kizu T, Hamano M, et al. Estrogen deficiency worsens steatohepatitis in mice fed high-fat and high-cholesterol diet. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1031–43.

    Article  PubMed  CAS  Google Scholar 

  45. Akhondi-Meybodi M, Mortazavy-Zadah MR, Hashemian Z, Moaiedi M. Incidence and risk factors for non-alcoholic steatohepatitis in females treated with tamoxifen for breast cancer. Arab J Gastroenterol. 2011;12:34–6.

    Article  PubMed  CAS  Google Scholar 

  46. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. J Lipid Res. 1979;20:289–315.

    PubMed  CAS  Google Scholar 

  47. Targher G, Bertolini L, Rodella S, Zoppini G, Zenari L, Falezza G. Associations between liver histology and cortisol secretion in subjects with nonalcoholic fatty liver disease. Clin Endocrinol. 2006;64:337–41.

    Article  CAS  Google Scholar 

  48. Nanji AA, Jokelainen K, Fotouhinia M, Rahemtulla A, Thomas P, Tipoe GL, et al. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1348–56.

    PubMed  CAS  Google Scholar 

  49. Jarvelainen HA, Lukkari TA, Heinaro S, Sippel H, Lindros KO. The antiestrogen toremifene protects against alcoholic liver injury in female rats. J Hepatol. 2001;35:46–52.

    Article  PubMed  CAS  Google Scholar 

  50. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18:2195–224.

    Article  PubMed  CAS  Google Scholar 

  51. Rao P, Hayden MS, Long M, Scott ML, West AP, Zhang D, et al. IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature. 2010;466:1115–9.

    Article  PubMed  CAS  Google Scholar 

  52. Fan C, Li Q, Zhang Y, Liu X, Luo M, Abbott D, et al. IkappaBalpha and IkappaBbeta possess injury context-specific functions that uniquely influence hepatic NF-kappaB induction and inflammation. J Clin Invest. 2004;113:746–55.

    PubMed  CAS  Google Scholar 

  53. Luster MI, Simeonova PP, Gallucci RM, Bruccoleri A, Blazka ME, Yucesoy B, et al. The role of tumor necrosis factor alpha in chemical-induced hepatotoxicity. Ann N Y Acad Sci. 2000;919:214–20.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada Y, Kirillova I, Peschon JJ, Fausto N. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA. 1997;94:1441–6.

    Article  PubMed  CAS  Google Scholar 

  55. Gonzalez-Quintela A, Vidal C, Lojo S, Perez LF, Otero-Anton E, Gude F, et al. Serum cytokines and increased total serum IgE in alcoholics. Ann Allergy Asthma Immunol. 1999;83:61–7.

    Article  PubMed  CAS  Google Scholar 

  56. Latvala J, Hietala J, Koivisto H, Jarvi K, Anttila P, Niemela O. Immune responses to ethanol metabolites and cytokine profiles differentiate alcoholics with or without liver disease. Am J Gastroenterol. 2005;100:1303–10.

    Article  PubMed  CAS  Google Scholar 

  57. Lee FY, Lu RH, Tsai YT, Lin HC, Hou MC, Li CP, et al. Plasma interleukin-6 levels in patients with cirrhosis. Relationship to endotoxemia, tumor necrosis factor-alpha, and hyperdynamic circulation. Scand J Gastroenterol. 1996;31:500–5.

    Article  PubMed  CAS  Google Scholar 

  58. Miller AM, Wang H, Park O, Horiguchi N, Lafdil F, Mukhopadhyay P, et al. Anti-inflammatory and anti-apoptotic roles of endothelial cell STAT3 in alcoholic liver injury. Alcohol Clin Exp Res. 2010;34:719–25.

    Article  PubMed  CAS  Google Scholar 

  59. Horiguchi N, Wang L, Mukhopadhyay P, Park O, Jeong WI, Lafdil F, et al. Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology. 2008;134:1148–58.

    Article  PubMed  CAS  Google Scholar 

  60. Zimmers TA, McKillop IH, Pierce RH, Yoo JY, Koniaris LG. Massive liver growth in mice induced by systemic interleukin 6 administration. Hepatology. 2003;38:326–34.

    Article  PubMed  CAS  Google Scholar 

  61. El-Assal O, Hong F, Kim WH, Radaeva S, Gao B. IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver. Cell Mol Immunol. 2004;1:205–11.

    PubMed  CAS  Google Scholar 

  62. Apte UM, McRee R, Ramaiah SK. Hepatocyte proliferation is the possible mechanism for the transient decrease in liver injury during steatosis stage of alcoholic liver disease. Toxicol Pathol. 2004;32:567–76.

    Article  PubMed  CAS  Google Scholar 

  63. Enomoto N, Takei Y, Hirose M, Ikejima K, Kitamura T, Sato N. Thalidomide prevents alcoholic liver injury in rats through inhibition of Kupffer cell sensitization. Comp Hepatol. 2004;3(Suppl 1):S37.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH/NIAAA Grant R03AA015198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randle M. Gallucci.

Additional information

Responsible Editor: Ian Ahnfelt-Rønne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.G., Mickle-Kawar, B.M., Reinke, L.A. et al. Estrogen suppresses heptatic IκB expression during short-term alcohol exposure. Inflamm. Res. 61, 1053–1061 (2012). https://doi.org/10.1007/s00011-012-0497-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0497-8

Keywords

Navigation