Skip to main content

Advertisement

Log in

Potential involvement of CCL23 in atherosclerotic lesion formation/progression by the enhancement of chemotaxis, adhesion molecule expression, and MMP-2 release from monocytes

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

CCL23 [Ckβ8-1/myeloid progenitor inhibitory factor 1 (MPIF1)/macrophage inflammatory protein-3 (MIP3)], a member of the CC chemokine family, is involved in leukocyte trafficking, and implicated in inflammatory diseases. In the present study, we investigated the role of CCL23 in the development of human atherosclerosis, which is characterized by an inflammatory disease.

Methods

CCL23 transcripts were measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and CCL23 protein by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). Expression of adhesion molecules was determined by flow cytometry, and matrix metalloproteinase-2 (MMP-2) levels by zymography.

Results

Proatherogenic factors such as oxidized low-density lipoprotein (oxLDL) and oxidative stress markedly enhanced CCL23 release from human THP-1 macrophages. CCL23 stimulated chemotaxis of human THP-1 monocytes in a dose-dependent manner and enhanced the expression of adhesion molecule CD11c, as well as release of MMP-2 from the THP-1 monocytes. Moreover, CCL23 expression at the mRNA level was significantly higher in human atherosclerotic lesions than in normal arteries, and CCL23 protein was co-expressed with CD68, a specific marker for macrophages. Circulating levels of plasma CCL23 were higher in atherosclerotic patients than in normal subjects.

Conclusion

These findings suggest that CCL23 plays a role in the development of human atherosclerosis. CCL23 may be a useful target for the development of antiatherogenic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reape TJ, Groot PH. Chemokines and atherosclerosis. Atherosclerosis. 1999;147:213–25.

    Article  PubMed  CAS  Google Scholar 

  2. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  PubMed  CAS  Google Scholar 

  3. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell. 1998;2:275–81.

    Article  PubMed  CAS  Google Scholar 

  4. Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC, Schall TJ. Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol. 2005;174:7341–51.

    PubMed  CAS  Google Scholar 

  5. Forssmann U, Delgado MB, Uguccioni M, Loetscher P, Garotta G, Baggiolini M. CKbeta8, a novel CC chemokine that predominantly acts on monocytes. FEBS Lett. 1997;408:211–6.

    Article  PubMed  CAS  Google Scholar 

  6. Kim J, Kim YS, Ko J. CKbeta8/CCL23 induces cell migration via the G(i)/G(o) protein/PLC/PKCdelta/NF-kappaB and is involved in inflammatory responses. Life Sci. 2010; 86:300-308.

    Google Scholar 

  7. Castillo L, Rohatgi A, Ayers CR, Owens AW, Das SR, Khera A, et al. Associations of four circulating chemokines with multiple atherosclerosis phenotypes in a large population-based sample: results from the dallas heart study. J Interferon Cytokine Res. 2010;30:339–47.

    Article  PubMed  CAS  Google Scholar 

  8. Kim CS, Kawada T, Yoo H, Kwon BS, Yu R. Macrophage inflammatory protein-related protein-2, a novel CC chemokine, can regulate preadipocyte migration and adipocyte differentiation. FEBS Lett. 2003;548:125–30.

    Article  PubMed  CAS  Google Scholar 

  9. Harrington JR. The role of MCP-1 in atherosclerosis. Stem Cells. 2000;18:65–6.

    Article  PubMed  CAS  Google Scholar 

  10. Matsumori A, Ono K, Nishio R, Igata H, Shioi T, Matsui S, et al. Modulation of cytokine production and protection against lethal endotoxemia by the cardiac glycoside ouabain. Circulation. 1997;96:1501–6.

    PubMed  CAS  Google Scholar 

  11. Attiga FA, Fernandez PM, Weeraratna AT, Manyak MJ, Patierno SR. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res. 2000;60:4629–37.

    PubMed  CAS  Google Scholar 

  12. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev. 2005;85:1–31.

    Article  PubMed  CAS  Google Scholar 

  13. Kodali R, Hajjou M, Berman AB, Bansal MB, Zhang S, Pan JJ, et al. Chemokines induce matrix metalloproteinase-2 through activation of epidermal growth factor receptor in arterial smooth muscle cells. Cardiovasc Res. 2006;69:706–15.

    Article  PubMed  CAS  Google Scholar 

  14. Erridge C, Webb DJ, Spickett CM. 25-Hydroxycholesterol, 7beta-hydroxycholesterol and 7-ketocholesterol upregulate interleukin-8 expression independently of Toll-like receptor 1, 2, 4 or 6 signalling in human macrophages. Free Radic Res. 2007;41:260–6.

    Article  PubMed  CAS  Google Scholar 

  15. Yu R, Kim CS, Kawada T, Kwon TW, Lim TH, Kim YW, et al. Involvement of leukotactin-1, a novel CC chemokine, in human atherosclerosis. Atherosclerosis. 2004;174:35–42.

    Article  PubMed  CAS  Google Scholar 

  16. Braunersreuther V, Steffens S, Arnaud C, Pelli G, Burger F, Proudfoot A, et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol. 2008;28:1090–6.

    Article  PubMed  CAS  Google Scholar 

  17. Hwang J, Son KN, Kim CW, Ko J, Na DS, Kwon BS, et al. Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine. 2005;30:254–63.

    Article  PubMed  CAS  Google Scholar 

  18. Son KN, Hwang J, Kwon BS, Kim J. Human CC chemokine CCL23 enhances expression of matrix metalloproteinase-2 and invasion of vascular endothelial cells. Biochem Biophys Res Commun. 2006;340:498–504.

    Article  PubMed  CAS  Google Scholar 

  19. Slevin M, Cao Y, Kitajewski J. Welcome to journal of angiogenesis research. J Angiogenes Res. 2009;1:1.

    Article  PubMed  Google Scholar 

  20. Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol. 2009;218:7–29.

    Article  PubMed  Google Scholar 

  21. Kofler S, Nickel T, Weis M. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond). 2005;108:205–13.

    Article  CAS  Google Scholar 

  22. Yoshidome H, Kohno H, Shida T, Kimura F, Shimizu H, Ohtsuka M, et al. Significance of monocyte chemoattractant protein-1 in angiogenesis and survival in colorectal liver metastases. Int J Oncol. 2009;34:923–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 2009 Research Fund of the University of Ulsan.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Yu.

Additional information

Responsible Editor: Makoto Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CS., Kang, JH., Cho, HR. et al. Potential involvement of CCL23 in atherosclerotic lesion formation/progression by the enhancement of chemotaxis, adhesion molecule expression, and MMP-2 release from monocytes. Inflamm. Res. 60, 889–895 (2011). https://doi.org/10.1007/s00011-011-0350-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0350-5

Keywords

Navigation