Skip to main content

Advertisement

Log in

H89, an inhibitor of PKA and MSK, inhibits cyclic-AMP response element binding protein-mediated MAPK phosphatase-1 induction by lipopolysaccharide

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Lipopolysaccharide (LPS) stimulates the production of inflammatory cytokines and the amplification of immune responses via MAPK pathways. MAPK phosphatases (MKPs) feedback-regulate the activities of MAPKs to prevent excessive immunological functions. H89 has been used as an inhibitor of the protein kinase A (PKA) and mitogen- and stress-activated protein kinase (MSK) pathways. In view of the potential roles of PKA and MSK for MKP-1 induction and the ability of H89 to inhibit these kinases, this study examined the effect of H89 on MKP-1 induction by LPS and the role of cyclic-AMP response element binding protein (CREB) in the MKP-1 induction.

Results

H89 treatment inhibited increases in MKP-1 protein and mRNA levels, and gene transcription by LPS in Raw264.7 cells. Immunoblot, gel-shift, and chromatin-immunoprecipitation assays showed the activation of CREB by LPS, and the ability of H89 to inhibit it, suggesting that H89’s inhibition of CREB may affect MKP-1 induction. In addition, H89 prevented the ability of LPS to induce other MKP genes (Dusp-2, 4, 8, and 16). Experiments using MAPK inhibitors showed that MAPKs are involved in CREB phosphorylation and MKP-1 induction, suggesting that CREB-mediated MKP-1 induction serves in part as a feedback-inhibitory loop of MAPKs.

Conclusion

Our results demonstrate that H89 inhibits the activation of CREB and the CREB-mediated MKP-1 induction by LPS, which may result from its inhibition of PKA and MSK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CREB:

Cyclic-AMP response element binding protein

Dn:

Dominant-negative mutant

Dusp:

Dual specificity phosphatase

ERK:

Extracellular signal-regulated kinase

JNK:

c-Jun NH2-terminal kinase

LPS:

Lipopolysaccharide

MAPKs:

Mitogen-activated protein kinases

MGI:

Mouse genome informatics

MKPs:

MAPK phosphatases

MSK:

Mitogen- and stress-activated protein kinase

PKA:

Protein kinase A

TLR:

Toll-like receptor

TLRLs:

Toll-like receptor ligands

References

  1. Abbas AK, Lichtman AH, Pober JS. Cellular and Molecular Immunology. Philadelphia: Elsevier Saunders; 1997. p. 341–61.

    Google Scholar 

  2. Barton GM, Medizhitov R. Toll-like receptor signaling pathways. Science. 2003;300:1524–5.

    Article  CAS  PubMed  Google Scholar 

  3. Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55–72.

    Article  CAS  PubMed  Google Scholar 

  4. Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal. 2004;16:769–79.

    Article  CAS  PubMed  Google Scholar 

  5. Akira S, Kishimoto T. NF-IL6 and NF-kappa B in cytokine gene regulation. Adv Immunol. 1997;65:1–46.

    Article  CAS  PubMed  Google Scholar 

  6. Caivano M, Cohen P. Role of mitogen-activated protein kinase cascades in mediating lipopolysaccharide-stimulated induction of cyclooxygenase-2 and IL-1 beta in Raw264 macrophages. J Immunol. 2000;164:3018–25.

    CAS  PubMed  Google Scholar 

  7. Liu Y, Shepherd EG, Nelin LD. MAPK phosphatases-regulating the immune response. Nat Rev Immunol. 2007;7:202–12.

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Liu Y. Regulation of innate immune response by MAP kinase phosphatase-1. Cell Signal. 2007;19:1372–82.

    Article  CAS  PubMed  Google Scholar 

  9. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med. 2006;203:15–20.

    Article  CAS  PubMed  Google Scholar 

  10. Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T. Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol. 2006;176:1899–907.

    CAS  PubMed  Google Scholar 

  11. Charles CH, Abler AS, Lau LF. cDNA sequence of a growth factor-inducible immediate early gene and characterization of its encoded protein. Oncogene. 1992;7:187–90.

    CAS  PubMed  Google Scholar 

  12. Franklin CC, Kraft AS. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J Biol Chem. 1997;272:16917–23.

    Article  CAS  PubMed  Google Scholar 

  13. Tanabe J, Watanabe M, Kondoh S, Mue S, Ohuchi K. Possible roles of protein kinases in neutrophil chemotactic factor production by leucocytes in allergic inflammation in rats. Br J Pharmacol. 1994;113:1480–6.

    CAS  PubMed  Google Scholar 

  14. Ono-Saito N, Niki I, Hidaka H. H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther. 1999;82:123–31.

    Article  CAS  PubMed  Google Scholar 

  15. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, et al. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990;265:5267–72.

    CAS  PubMed  Google Scholar 

  16. Lochner A, Moolman JA. The many faces of H89: a review. Cardiovasc Drug Rev. 2006;24:261–74.

    Article  CAS  PubMed  Google Scholar 

  17. Cho IJ, Woo NR, Kim SG. The identification of C/EBPbeta as a transcription factor necessary for the induction of MAPK phosphatase-1 by toll-like receptor-4 ligand. Arch Biochem Biophys. 2008;479:88–96.

    Article  CAS  PubMed  Google Scholar 

  18. Cho IJ, Kim SG. A novel mitogen-activated protein kinase phosphatase-1 and glucocorticoid receptor (GR) interacting protein-1-dependent combinatorial mechanism of gene transrepression by GR. Mol Endocrinol. 2009;23:86–99.

    Article  CAS  PubMed  Google Scholar 

  19. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel A, Kel O, et al. Databases on transcriptional regulation: TRANSFAC, TRRD, and COMPEL. Nucleic Acids Res. 1998;26:364–70.

    Article  Google Scholar 

  20. Noguchi T, Metz R, Chen L, Mattei MG, Carrasco D, Bravo R. Structure, mapping, and expression of ERP, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth. Mol Cell Biol. 1993;13:5195–205.

    CAS  PubMed  Google Scholar 

  21. Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell. 2005;122:707–21.

    Article  CAS  PubMed  Google Scholar 

  22. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA. 2006;103:2274–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi Y, Mizoguchi T, Take I, Kurihara S, Udagawa N, Takahashi N. Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biol Chem. 2005;280:11395–403.

    Article  CAS  PubMed  Google Scholar 

  24. Murray AJ. Pharmacological PKA inhibition: all may not be what it seems. Sci Signal. 2008;1:re4.

    Article  PubMed  Google Scholar 

  25. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000;351:95–105.

    Article  CAS  PubMed  Google Scholar 

  26. Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599–609.

    Article  CAS  PubMed  Google Scholar 

  27. Cho MK, Cho YH, Lee GH, Kim SG. Induction of cyclooxygenase-2 by bovine type I collagen in macrophages via C/EBP and CREB activation by multiple cell signaling pathways. Biochem Pharmacol. 2004;67:2239–50.

    Article  CAS  PubMed  Google Scholar 

  28. Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998;17:4426–41.

    Article  CAS  PubMed  Google Scholar 

  29. Johannessen M, Delghandi MP, Moens U. What turns CREB on? Cell Signal. 2004;16:1211–7.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu X, Chang MS, Hsueh RC, Taussig R, Smith KD, Simon MI, et al. Dual ligand stimulation of RAW 264.7 cells uncovers feedback mechanisms that regulate TLR-mediated gene expression. J Immunol. 2006;177:4299–310.

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, et al. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature. 2004;430:793–7.

    Article  CAS  PubMed  Google Scholar 

  32. Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ, et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol. 2006;7:274–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (No.R11-2007-107-01001-0), and in part by Korea Research Foundation grant KRF-2004-015-E00096, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to In Chul Shin or Sang Geon Kim.

Additional information

Responsible Editor: J. Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, I.J., Woo, N.R., Shin, I.C. et al. H89, an inhibitor of PKA and MSK, inhibits cyclic-AMP response element binding protein-mediated MAPK phosphatase-1 induction by lipopolysaccharide. Inflamm. Res. 58, 863–872 (2009). https://doi.org/10.1007/s00011-009-0057-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0057-z

Keywords

Navigation