Skip to main content
Log in

A note on iterated maps of the unit sphere

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Let \(\mathcal {C}(S^{m})\) denote the set of continuous maps from the unit sphere \(S^{m}\) in the Euclidean space \(\mathbb {R}^{m+1}\) into itself endowed with the supremum norm. We prove that the set \(\{f^n: f\in \mathcal {C}(S^{m})~\text {and}~n\ge 2\}\) of iterated maps is not dense in \(\mathcal {C}(S^{m})\). This, in particular, proves that the periodic points of the iteration operator of order n are not dense in \(\mathcal {C}(S^m)\) for all \(n\ge 2\), providing an alternative proof of the result that these operators are not Devaney chaotic on \(\mathcal {C}(S^m)\) proved in Veerapazham et al. (Proc Am Math Soc 149(1):217–229, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babbage, C.: Essay towards the calculus of functions. Philos. Trans. 66, 389–423 (1815)

    Google Scholar 

  2. Baron, K., Jarczyk, W.: Recent results on functional equations in a single variable, perspectives and open problems. Aequat. Math. 61, 1–48 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bhat, B.V.R., Gopalakrishna, C.: Iterative square roots of functions. Ergod. Theory Dyn. Syst. 43(7), 2201–2227 (2023)

    Article  MathSciNet  Google Scholar 

  4. Bhat, B.V.R., Gopalakrishna, C.: The non-iterates are dense in the space of continuous self-maps. Nonlinearity 36, 3419–3430 (2023)

    Article  MathSciNet  Google Scholar 

  5. Blokh, A.M.: The set of all iterates is nowhere dense in \(C([0,1],[0,1])\). Trans. Am. Math. Soc. 333(2), 787–798 (1992)

    MathSciNet  Google Scholar 

  6. Brouwer, L.E.J.: Über Abbildung von Mannigfaltigkeiten. Math. Ann. 71(1), 97–115 (2011)

    Article  Google Scholar 

  7. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, Studies in Nonlinearity. Westview Press, Boulder (2003)

  8. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. Humke, P.D., Laczkovich, M.: The Borel structure of iterates of continuous functions. Proc. Edinb. Math. Soc. 32, 483–494 (1989)

    Article  MathSciNet  Google Scholar 

  10. Humke, P.D., Laczkovich, M.: Approximations of continuous functions by squares. Ergod. Theory Dyn. Syst. 10(2), 361–366 (1990)

    Article  MathSciNet  Google Scholar 

  11. Jarczyk, W.: Babbage equation on the circle. Publ. Math. Debrecen 63, 389–400 (2003)

    Article  MathSciNet  Google Scholar 

  12. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations, Volume 32 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1990)

  13. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  14. Rice, R.E., Schweizer, B., Sklar, A.: When is \(f(f(z)) = az^2 + bz + c?\). Am. Math. Mon. 87(4), 252–263 (1980)

    Google Scholar 

  15. Simon, K.: Some dual statements concerning Wiener measure and Baire category. Proc. Am. Math. Soc. 106(2), 455–463 (1989)

    Article  MathSciNet  Google Scholar 

  16. Simon, K.: Typical functions are not iterates. Acta Math. Hungar. 55, 133–134 (1990)

    Article  MathSciNet  Google Scholar 

  17. Simon, K.: The set of second iterates is nowhere dense in \(C\). Proc. Am. Math. Soc. 111, 1141–1150 (1991)

    MathSciNet  Google Scholar 

  18. Simon, K.: The iterates are not dense in \(C\). Math. Pannon. 2, 71–76 (1991)

    MathSciNet  Google Scholar 

  19. Solarz, P.: On iterative roots of a homeomorphism of the circle with an irrational rotation number. Math. Pannon. 13, 137–145 (2002)

    MathSciNet  Google Scholar 

  20. Solarz, P.: On some iterative roots on the circle. Publ. Math. Debrecen 63, 677–692 (2003)

    Article  MathSciNet  Google Scholar 

  21. Solarz, P.: Iterative roots of some homeomorphisms with a rational rotation number. Aequat. Math. 72, 152–171 (2006)

    Article  MathSciNet  Google Scholar 

  22. Solarz, P.: General theorem for the existence of iterative roots of homeomorphisms with periodic points. J. Math. Anal. Appl. 394, 391–399 (2012)

    Article  MathSciNet  Google Scholar 

  23. Targonski, G.: Topics in Iteration Theory. Vandenhoeck and Ruprecht, Göttingen (1981)

    Google Scholar 

  24. Veerapazham, M., Gopalakrishna, C., Zhang, W.: Dynamics of the iteration operator on the space of continuous self-maps. Proc. Am. Math. Soc. 149(1), 217–229 (2021)

    Article  MathSciNet  Google Scholar 

  25. Zdun, M.C.: On iterative roots of homeomorphisms of the circle. Bull. Pol. Acad. Sci. Math. 48, 203–213 (2000)

    MathSciNet  Google Scholar 

  26. Zdun, M.C.: On a factorization of homeomorphisms of the circle possessing periodic points. J. Math. Anal. Appl. 342, 340–348 (2008)

    Article  MathSciNet  Google Scholar 

  27. Zdun, M.C., Solarz, P.: Recent results on iteration theory: iteration groups and semigroups in the real case. Aequat. Math. 87, 201–245 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhang, W.: PM functions, their characteristic intervals and iterative roots. Ann. Polon. Math. 65(2), 119–128 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is supported by the National Board for Higher Mathematics, India through No: 0204/3/2021/R &D-II/7389. The author is very grateful to his mentor Professor B. V. Rajarama Bhat, and Professor B. Sury for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

This work is completed entirely by the author.

Corresponding author

Correspondence to Chaitanya Gopalakrishna.

Ethics declarations

Conflict of interest

The author has no conflicts of interest that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishna, C. A note on iterated maps of the unit sphere. Aequat. Math. 98, 503–507 (2024). https://doi.org/10.1007/s00010-023-00979-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-023-00979-6

Keywords

Mathematics Subject Classification

Navigation