Skip to main content

Advertisement

SpringerLink
  • Aequationes mathematicae
  • Journal Aims and Scope
  • Submit to this journal
Fringe analysis of plane trees related to cutting and pruning
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Extremal Distances for Subtree Transfer Operations in Binary Trees

13 December 2018

Ross Atkins & Colin McDiarmid

The relation between the number of leaves of a tree and its diameter

07 September 2021

Pu Qiao & Xingzhi Zhan

Trees with exponential height dependent weight

03 February 2023

Bergfinnur Durhuus & Meltem Ünel

A Stronger Lower Bound on Parametric Minimum Spanning Trees

22 August 2022

David Eppstein

VC-density for trees

30 November 2018

Anton Bobkov

Bounding the k $k$ -Steiner Wiener and Wiener-Type Indices of Trees in Terms of Eccentric Sequence

13 January 2021

Peter Dankelmann & Audace A. V. Dossou-Olory

On the Extremal Mostar Indices of Trees with a Given Segment Sequence

01 November 2021

Kecai Deng & Shuchao Li

Constructing Tree-Decompositions That Display All Topological Ends

10 October 2022

Max Pitz

Distinct Fringe Subtrees in Random Trees

01 August 2022

Louisa Seelbach Benkner & Stephan Wagner

Download PDF
  • Open Access
  • Published: 23 January 2018

Fringe analysis of plane trees related to cutting and pruning

  • Benjamin Hackl  ORCID: orcid.org/0000-0003-2998-95991,
  • Clemens Heuberger  ORCID: orcid.org/0000-0003-0082-73341,
  • Sara Kropf  ORCID: orcid.org/0000-0002-1872-95672 &
  • …
  • Helmut Prodinger  ORCID: orcid.org/0000-0002-0009-80153 

Aequationes mathematicae volume 92, pages 311–353 (2018)Cite this article

  • 323 Accesses

  • 1 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Rooted plane trees are reduced by four different operations on the fringe. The number of surviving nodes after reducing the tree repeatedly for a fixed number of times is asymptotically analyzed. The four different operations include cutting all or only the leftmost leaves or maximal paths. This generalizes the concept of pruning a tree. The results include exact expressions and asymptotic expansions for the expected value and the variance as well as central limit theorems.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Callan, D.: Kreweras’s Narayana number identity has a simple Dyck path interpretation (2012). arXiv:1203.3999 [math.CO]

  2. Chen, W.Y.C., Deutsch, E., Elizalde, S.: Old and young leaves on plane trees. Eur. J. Combin. 27(3), 414–427 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Bruijn, N.G., Knuth, D.E., Rice, S.O.: The Average Height of Planted Plane Trees. Graph theory and computing, pp. 15–22. Academic Press, New York (1972)

    MATH  Google Scholar 

  4. de Chaumont, M.V.: Nombre de Strahler des arbres, languages algébrique et dénombrement de structures secondaires en biologie moléculaire. Doctoral thesis, Université de Bordeaux I (1985)

  5. Drmota, M.: Random Trees. Springer, Wien (2009)

    Book  MATH  Google Scholar 

  6. Drmota, M.: Trees, Handbook of Enumerative Combinatorics, Discrete Mathematics and Applications, pp. 281–334. CRC Press, Boca Raton (2015)

    Google Scholar 

  7. Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25(2), 171–213 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3, 216–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flajolet, P., Raoult, J.-C., Vuillemin, J.: The number of registers required for evaluating arithmetic expressions. Theor. Comput. Sci. 9(1), 99–125 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  11. Hackl, B., Heuberger, C., Prodinger, H.: Reductions of binary trees and lattice paths induced by the register function (2016). https://doi.org/10.1016/j.tcs.2017.09.015

  12. Hackl, B., Kropf, S., Prodinger, H.: Iterative cutting and pruning of planar trees. In: Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO) (Philadelphia PA), SIAM, pp. 66–72 (2017)

  13. Heuberger, C., Kropf, S.: Higher dimensional quasi-power theorem and Berry–Esseen inequality (2016). arXiv:1609.09599 [math.PR]

  14. Hwang, H.-K.: On convergence rates in the central limit theorems for combinatorial structures. Eur. J. Combin. 19, 329–343 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Janson, S.: Random cutting and records in deterministic and random trees. Random Struct. Algorithms 29(2), 139–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Janson, S.: Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton–Watson trees. Random Struct. Algorithms 48(1), 57–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kemp, R.: A note on the stack size of regularly distributed binary trees. BIT 20(2), 157–162 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirschenhofer, P., Prodinger, H.: Further results on digital search trees. Theor. Comput. Sci. 58(1–3), 143–154 (1988). (Thirteenth International Colloquium on Automata, Languages and Programming (Rennes, 1986))

    Article  MathSciNet  MATH  Google Scholar 

  19. Meir, A., Moon, J.W.: Cutting down random trees. J. Aust. Math. Soc. 11, 313–324 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. NIST Digital library of mathematical functions. http://dlmf.nist.gov/, Release 1.0.13 of 2016-09-16, 2016, Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. eds

  21. Panholzer, A.: Cutting down very simple trees. Quaest. Math. 29(2), 211–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prodinger, H.: The height of planted plane trees revisited. Ars Combin. 16(B), 51–55 (1983)

    MathSciNet  MATH  Google Scholar 

  23. The SageMath Developers: SageMath Mathematics Software (Version 7.4) (2016). http://www.sagemath.org

  24. Viennot, X.G.: A Strahler bijection between Dyck paths and planar trees. Discrete Math. 246(1–3), 317–329 (2002). (Formal Power Series and Algebraic Combinatorics (1999))

    Article  MathSciNet  MATH  Google Scholar 

  25. Wagner, S.: Central limit theorems for additive tree parameters with small toll functions. Combin. Probab. Comput. 24, 329–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1996). (Reprint of the fourth (1927) edition)

    Book  MATH  Google Scholar 

  27. Zeilberger, D.: A bijection from ordered trees to binary trees that sends the pruning order to the Strahler number. Discrete Math. 82(1), 89–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Open access funding provided by University of Klagenfurt

Author information

Authors and Affiliations

  1. Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstrasse 65–67, 9020, Klagenfurt, Austria

    Benjamin Hackl & Clemens Heuberger

  2. Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan

    Sara Kropf

  3. Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa

    Helmut Prodinger

Authors
  1. Benjamin Hackl
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Clemens Heuberger
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sara Kropf
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Helmut Prodinger
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Benjamin Hackl.

Additional information

Benjamin Hackl and Clemens Heuberger are supported by the Austrian Science Fund (FWF): P 24644-N26 and by the Karl Popper Kolleg “Modeling-Simulation-Optimization” funded by the Alpen-Adria-Universität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF). Helmut Prodinger is supported by an incentive grant of the National Research Foundation of South Africa. Part of this author’s work was done while he visited Academia Sinica. He thanks the Institute of Statistical Science for its hospitality.

This is the full version of the extended abstract [12].

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hackl, B., Heuberger, C., Kropf, S. et al. Fringe analysis of plane trees related to cutting and pruning. Aequat. Math. 92, 311–353 (2018). https://doi.org/10.1007/s00010-017-0529-0

Download citation

  • Received: 04 April 2017

  • Published: 23 January 2018

  • Issue Date: April 2018

  • DOI: https://doi.org/10.1007/s00010-017-0529-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Mathematics Subject Classification

  • 05A16
  • 05C05
  • 05A15
  • 05A19
  • 60C05

Keywords

  • Plane trees
  • Pruning
  • Tree reductions
  • Central limit theorem
  • Narayana polynomials
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.