Skip to main content
Log in

On the covering index of convex bodies

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Covering a convex body by its homothets is a classical notion in discrete geometry that has resulted in a number of interesting and long-standing problems. Swanepoel introduced the covering parameter of a convex body as a means of quantifying its covering properties. In this paper, we introduce two relatives of the covering parameter called covering index and weak covering index, which upper bound well-studied quantities like the illumination number, the illumination parameter and the covering parameter of a convex body. Intuitively, the two indices measure how well a convex body can be covered by a relatively small number of homothets having the same relatively small homothety ratio. We show that the covering index is a lower semicontinuous functional on the Banach-Mazur space of convex bodies. We further show that the affine d-cubes minimize the covering index in any dimension d, while circular disks maximize it in the plane. Furthermore, the covering index satisfies a nice compatibility with the operations of direct vector sum and vector sum. In fact, we obtain an exact formula for the covering index of a direct vector sum of convex bodies that works in infinitely many instances. This together with a minimization property can be used to determine the covering index of infinitely many convex bodies. As the name suggests, the weak covering index loses some of the important properties of the covering index. Finally, we obtain upper bounds on the covering and weak covering index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belousov J.F.: Theorems on covering of plane figures. Ukrain. Geom. Sb. 20, 10–17 (1977)

    MathSciNet  Google Scholar 

  2. Bezdek K.: . Beiträge Algebra Geom. 14, 7–13 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Bezdek K.: Research problem 46. Period. Math. Hungar. 24, 119–121 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bezdek K., Langi Z., Naszódi M., Papez P.: Ball-polyhedra. Discrete Comput. Geom. 38(2), 201–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezdek, K.: Classical topics in discrete geometry, CMS Books in Mathematics. Springer, New York (2010)

  6. Boltyanski V.: The problem of illuminating the boundary of a convex body. Izv. Mold. Fil. AN SSSR 76, 77–84 (1960)

    Google Scholar 

  7. Boltyanski V., Martini H., Soltan P.S.: Excursions into combinatorial geometry. Springer, New York (1997)

    Book  MATH  Google Scholar 

  8. Boltyanski V., Martini H.: Illumination of direct vector sums of convex bodies. Stud. Sci. Math. Hung. 44(3), 367–376 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Brass P., Moser W., Pach J.: Research problems in discrete geometry. Springer, US (2005)

    MATH  Google Scholar 

  10. Fejes Tóth, G.: Thinnest covering of a circle with eight, nine, or ten congruent circles. In: Combinatorial and computational geometry, Math. Sci. Res. INst. Publ., vol. 52, pp. 361–376. Cambridge Univ. Press, Cambridge (2005)

  11. Fudali S.: Homotetyczne pokrycie trójkata. Matematyka 35, 94–109 (1982)

    Google Scholar 

  12. Gohberg, I. Ts., Markus, A.S.: A certain problem about the covering of convex sets with homothetic ones. Izvestiya Moldavskogo Filiala Akademii Nauk SSSR (In Russian). 10(76), 87–90 (1960)

  13. Hadwiger H.: Ungelöste Probleme Nr. 20. Elem. der Math. 12, 121 (1957)

    MathSciNet  Google Scholar 

  14. Hadwiger H.: Ungelöste Probleme Nr. 38. Elem. der Math. 15, 130–131 (1960)

    MathSciNet  Google Scholar 

  15. Kiss Gy., de Wet P.O.: Notes on the illumination parameters of convex polytopes. Contrib. Discrete Math. 7(1), 58–67 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Lassak M.: Covering a plane convex body by four homothetical copies with the smallest positive ratio. Geom. Dedicata 21, 157–167 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lassak, M.: Covering plane convex bodies by smaller homothetical copies. In: Intuitive Geometry (Siófok, 1985), Colloq. Math. Soc. János Bolyai, vol. 48, pp. 331–337. North-Holland, Amsterdam (1987)

  18. Lassak M.: Covering the boundary of a convex set by tiles. Proc. Am. Math. Soc. 104(1), 269–272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Levi F.W.: Ein geometrisches Überdeckungsproblem. Arch. Math. 5, 476–478 (1954)

    Article  MATH  Google Scholar 

  20. Levi F.W.: Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns. Arch. Math. 6(5), 369–370 (1955)

    Article  MATH  Google Scholar 

  21. Macbeath A.M.: A compactness theorem for affine equivalence-classes of convex regions. Can. J. Math. 3, 54–61 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  22. Martini H., Soltan V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57, 121–152 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. MathOverFlow, Covering a unit ball with balls half the radius. http://mathoverflow.net/q/98007 (version: 2012-08-05)

  24. Rogers C.A.: A note on coverings. Mathematika. 4, 1–6 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rogers C.A., Shephard G.C.: The difference body of a convex body. Arch. Math. 8, 220–233 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rogers C.A.: Covering a sphere with spheres. Mathematika 10, 157–164 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rogers C.A., Zong C.: Covering convex bodies by translates of convex bodies. Mathematika 44, 215–218 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schneider, R.: Convex bodies: the Brun-Minkowski Theory, 2nd edn. Encyclopedia of mathematics and its applications, vol. 151. Cambridge University Press, Cambridge (2014)

  29. Swanepoel K.J.: Quantitative illumination of convex bodies and vertex degrees of geometric Steiner minimal trees. Mathematika 52, 47–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Verger-Gaugry J.-L.: Covering a ball with smaller equal balls in \({{\mathbb{R}}^{n}}\). Discrete Comput. Geom. 33, 143–155 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zong C.: A quantitative program for Hadwiger’s covering conjecture. Sci. China Math. 53(9), 2551–2560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Bezdek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezdek, K., Khan, M.A. On the covering index of convex bodies. Aequat. Math. 90, 879–903 (2016). https://doi.org/10.1007/s00010-016-0409-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-016-0409-z

Mathematics Subject Classification

Keywords

Navigation