Skip to main content
Log in

On Morrison’s definite integral

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

As an application of Cauchy’s Theorem we prove that

$$\int_{0}^{1}{\rm arctan}\left(\frac{{\rm arctanh} x-{\rm arctan} x}{\pi+{\rm arctanh} x-{\rm arctan} x}\right) \frac{dx}{x}= \frac{\pi}{8}{\rm log}\frac{\pi^{2}}{8}$$

answering by this means a question posted in 1984 by J. A. Morrison in the Problem Section of the journal SIAM Review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glasser M.L.: Transverse conductivity of an electron gas: zero-frequency limit. Phys. Rev. (2) 129, 472–480 (1963)

    Article  MATH  Google Scholar 

  2. Klamkin, M.S. (eds): Problems in Applied Mathematics. Selections from SIAM Review. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1990)

  3. Morrison J.A.: The solution of an integral equation related to an optimal linear estimation problem. SIAM J. Appl. Math. 42, 588–607 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  4. Morrison J.A.: Problem 84.8. SIAM Rev. 26, 271 (1984)

    Article  Google Scholar 

  5. Reuter G.E.H., Sondheimer E.H.: The theory of the anomalous skin effect in metals. Proc. R. Soc. Lond. Ser. A 195, 336–364 (1948)

    Article  MATH  Google Scholar 

  6. MathStackExchange user larry. http://math.stackexchange.com/questions/464769

  7. Reshetnikov, V.: http://math.stackexchange.com/questions/521993

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Glasser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias de Reyna, J., Glasser, M.L. & Zhou, Y. On Morrison’s definite integral. Aequat. Math. 89, 1241–1250 (2015). https://doi.org/10.1007/s00010-015-0355-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-015-0355-1

Mathematics Subject Classification

Navigation