Abstract
The paper is devoted to the functional inequality (called by us Hlawka’s functional inequality)
for the unknown mapping f defined on an Abelian group, on a linear space or on the real line. The study of the foregoing inequality is motivated by Hlawka’s inequality:
which in particular holds true for all x, y, z from a real or complex inner product space.
Article PDF
References
Aczél J., Dhombres J.: Functional equations in several variables, Encyclopedia of Mathematics and its Applications, vol. 31. Cambridge University Press, Cambridge (1989)
Adamović D.D.: Généralisation d’une identité de Hlawka et de l’inéglité correspondante. Mat. Vesnik 1(16), 39–43 (1964)
Adamović D.D.: Quelques remarques relatives aux g’en’eralisations des in’egalit’es de Hlawka et de Hornich. Mat. Vesnik 1(16), 241–242 (1964)
Baron K., Volkmann P.: On orthogonally additive functions. Publ. Math. Debr. 52(3–4), 291–297 (1998)
Baston V.J.: On some Hlawka-type inequalities of Burkill. J. Lond. Math. Soc. II. Ser. 12, 402–404 (1976)
Berg I.D., Nikolaev I.G.: Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata 133, 195–218 (2008)
Burkill J.C.: The concavity of discrepancies in inequalities of the means and of Hölder. J. Lond. Math. Soc. II. Ser. 7, 617–626 (1974)
Cho Y.J., Matić M., Pečarić J.E.: Inequalities of Hlawka’s type in n-inner product spaces. Commun. Korean Math. Soc. 17(4), 583–592 (2002)
Djoković Ž.D.: Generalizations of Hlawka’s inequality. Glasnik Mat.-Fiz. Astromon. Ser. II. Društvo Mat. Fiz. Hrvatske 18, 169–175 (1963)
Fréchet M.: Sur la définition axiomatique d’une classe d’espaces vectoriels distancies applicables vectoriellement sur l’espace de Hilbert. Ann. Math. (2) 36, 705–718 (1935)
Fremlin D.H.: Measure Theory, vol. 4, Part II. Torres Fremlin, Colchester (2003)
Gajda, Z.: Invariant Means and representation of Semigroups in the Theory of Functional Equations, Prace Naukowe Uniwersytetu Śla¸skiego w Katowicach nr. 1273. Uniwersytet Śla¸ski, Katowice (1992)
Ger R.: Almost Approximately Additive Mappings, General Inequalities 3, ISNM 64, pp. 263–276. Birkhäuser Verlag, Basel (1983)
Ger, R.: Fischer-Muszély additivity on abelian groups. In: Comment. Math. Prace Mat., Tomus Specialis in honorem Juliani Musielak, pp. 82–96 (2004)
Honda A., Okazaki Y., Takahashi Y.: Generalizations of the Hlawka’s inequality. Bull. Kyushu Inst. Technol. Pure Appl. Math. 45, 9–15 (1998)
Hille, E., Phillips, R.S.: Colloquium publications. In: Functional analysis and semigroups, vol. 31, American Mathematical Society, Providence (1957)
Hornich H.: Eine Ungleichung für Vektorlängen. Math. Z. 48, 268–274 (1942)
Janous W.: The Hlawka–Djoković inequality and points in unitary spaces. Gen. Math. 15(1), 67–74 (2007)
Jordan P., Neumann von J.: On inner products in linear, metric spaces. Ann. Math. (2) 36, 719–723 (1935)
Kannappan Pl.: Quadratic functional equation and inner product spaces. Results Math. 27(3–4), 368–372 (1995)
Kečkić, J.D.: On an infinite system of functional inequalities. Publ. Fac. Électrotech. Univ. Belgrade, Sér. Math. Phys. 274–301, 79–81 (1969)
Kelly L.M., Smiley D.M., Smiley M.F.: Two dimensional spaces are quadilateral spaces. Am. Math. Mon. 72, 753–754 (1965)
Kuczma M.: An introduction to the theory of functional equations and inequalities, 2nd edn. Birkhäuser, Basel (2009)
Lindenstrauss J.: On the extension of operators with a finite-dimensional range. Ill. J. Math. 8, 488–499 (1964)
Lindenstrauss J., Pełczyński A.: Absolutely summing operators in \({\mathcal{L}_p}\) -spaces and their applications. Studia Math. 29, 275–326 (1968)
Mitrinović D.S., Pečarić J.E., Fink A.M.: Classical and new inequalities in analysis. Kluwer Academic Publishers, Dordrecht (1993)
Neyman A.: Representation of L p -norms and isometric embeddings in L p -spaces. Isr. J. Math. 48, 129–138 (1984)
Niculescu, C.P., Persson, L.-E.: Convex functions and their applications. A contemporary approach. In: CMS Books in Mathematics (Ouvrages de Mathématiques de la SMC 23), vol. xvi. Springer, New York, NY (2005)
Niederreiter H., Sloan I.H.: Variants of the Koksma–Hlawka inequality for vertex-modified quasi-Monte Carlo integration rules. Math. Comput. Model. 23(8–9), 69–77 (1996)
Pečarić J.E.: Modified version of a general result of Vasić-Adamović-Kečkić and some remarks concerning inequalities for convex functions. Glas. Mat. 21(41), 331–341 (1986)
Popoviciu T.: Sur certaines inégalités qui caractérisent les fonctions convexes. An. Sti. Univ. Al. I. Cuza Iasi N. Ser. Sect. Ia 11B, 155–164 (1965)
Rǎdulescu M., Rǎdulescu S.: Generalizations of Dobrushin’s inequalities and applications. J. Math. Anal. Appl. 204(3), 631–645 (1996)
Rosenbaum R.A.: Sub-additive functions. Duke Math. J. 17, 227–247 (1950)
Saks, S.: Theory of the integral, 2nd revised edn. With two addit. notes by S. Banach. G.E. Stechert & Co., New York (1937) [Reprinted by Dover Publications, New York (1964)]
Sato T.: An alternative proof of Berg and Nikolaev’s characterization of CAT(0)-spaces via quadrilateral inequality. Arch. Math. 93(5), 487–490 (2009)
Simon A., Volkmann P.: On two geometric inequalities. Ann. Math. Sil. 9, 137–140 (1995)
Smiley D.M., Smiley M.F.: The polygonal inequalities. Am. Math. Mon. 71, 755–760 (1964)
Takahashi Y., Wada S., Takahasi S.-E.: An extension of Hlawka’s inequality. Math. Inequal. Appl. 3(1), 63–67 (2000)
Takahasi S.-E., Takahashi Y., Honda A.: A new interpretation of Djoković’s inequality. J. Nonlinear Convex Anal. 1(3), 343–350 (2000)
Takahasi S.-E., Takahashi Y., Miyajima S., Takagi H.: Convex sets and inequalities. J. Inequal. Appl. 2, 107–117 (2005)
Takahashi Y., Takahasi S.-E., Wada S.: A general Hlawka inequality and its reverse inequality. Math. Inequal. Appl. 12(1), 1–10 (2009)
Vasić P.M., Adamović D.D.: Sur un syste‘me infini d’inégalités fonctionnelles. Publ. Inst. Math. Nouv. Sér. 9(23), 107–114 (1969)
Vasić P.M., Stanković L.R.: Some inequalities for convex functions. Math. Balk. 6, 281–288 (1976)
Wada S.: Hlawka’s inequality for matrices. RIMS Kokyuroku 1189, 138–143 (2001)
Watson D.: On quadrilateral spaces. Am. Math. Mon. 74(10), 1213–1215 (1967)
Witsenhausen H.S.: Metric inequalities and the zonoid problem. Proc. Am. Math. Soc. 40, 517–520 (1973)
Witsenhausen H.S.: A support characterization of zonotopes. Mathematika (London) 25, 13–16 (1978)
Wu X.: Inequalities of Hlawka type for fuzzy real numbers. Math. Inequal. Appl. 15(3), 675–684 (2012)
Open Access
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of the author was supported by the Polish Ministry of Science and Higher Education in the years 2012–2013.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Fechner, W. Hlawka’s functional inequality. Aequat. Math. 87, 71–87 (2014). https://doi.org/10.1007/s00010-012-0178-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00010-012-0178-2