
Aequat. Math. 87 (2014), 71–87
c© The Author(s) 2012. This article is published
with open access at Springerlink.com
0001-9054/14/010071-17
published online December 21, 2012
DOI 10.1007/s00010-012-0178-2 Aequationes Mathematicae

Hlawka’s functional inequality

W�lodzimierz Fechner

Abstract. The paper is devoted to the functional inequality (called by us Hlawka’s functional
inequality)

f(x + y) + f(y + z) + f(x + z) ≤ f(x + y + z) + f(x) + f(y) + f(z)

for the unknown mapping f defined on an Abelian group, on a linear space or on the real
line. The study of the foregoing inequality is motivated by Hlawka’s inequality:

‖x + y‖ + ‖y + z‖ + ‖x + z‖ ≤ ‖x + y + z‖ + ‖x‖ + ‖y‖ + ‖z‖,

which in particular holds true for all x, y, z from a real or complex inner product space.
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1. Introduction

Let X be a real or complex inner product space and let x, y, z ∈ X be arbitrary.
One can verify the classical identity

‖x + y‖2 + ‖y + z‖2 + ‖x + z‖2 = ‖x + y + z‖2 + ‖x‖2 + ‖y‖2 + ‖z‖2. (1)

A related inequality

‖x + y‖ + ‖y + z‖ + ‖x + z‖ ≤ ‖x + y + z‖ + ‖x‖ + ‖y‖ + ‖z‖, (2)

which is known as Hlawka’s inequality, appeared in 1942 in a paper of Hornich
[17].

The research of the author was supported by the Polish Ministry of Science and Higher
Education in the years 2012–2013.
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In 1963 Djoković [9] proved an important generalization of (2), which is
often called Hlawka–Djoković inequality; see also Adamović [2,3]. This inequal-
ity was obtained independently by Smiley and Smiley [37]. Some additional
comments can be found in a paper of Simon and Volkmann [36].

In 1974 Witsenhausen [46] showed the importance of inequality (2) for the
geometric properties of normed linear spaces. For a survey of other related
results which were known before 1993 the reader is referred to the monograph
Mitrinović et al. [26].

More recently, Wada [44] obtained a matrix version of the Hlawka–Djok-
ović inequality. Further extensions are due to Cho et al. [8], Rǎdulescu and
Rǎdulescu [32] and Honda et al. [15], among others. Integral generalizations of
(2) are due to Takahashi, et al. [38], [41], among others. Janous [18] obtained
several applications of the Hlawka–Djoković inequality for orthogonal polyno-
mials. Niederreiter and Sloan [29] provided some interesting applications of
Hlawka’s inequality and in a recent paper of Wu [48] a version of Hlawka’s
inequality for fuzzy real numbers is given.

Let us also note that inequalities similar to inequality (2) are important
in the theory of Aleksandrov spaces. In 2008 Berg and Nikolaev [6, Theo-
rem 6] presented an elegant characterization of CAT (0)-spaces using a related
inequality. Let us note that an alternative proof of this result was obtained by
Sato [35].

A normed linear space for which inequality (2) holds for all x, y, z is called
a Hlawka space (see e.g. Takahasi et al. [39,40]) or quadrilateral space (see
Smiley and Smiley [37], Watson [45]). It is easy to provide an example of a
Banach space which is not a Hlawka space. It suffices to consider the space
R

3 with the supremum norm and to take x = (1, 1,−1), y = (1,−1, 1) and
z = (−1, 1, 1). Then

‖x + y‖ + ‖y + z‖ + ‖x + z‖ = 6

whereas

‖x + y + z‖ + ‖z‖ + ‖y‖ + ‖z‖ = 4.

Modifying this example we can obtain even more: if x, y, z are the same as
before and the space R

3 is equipped with the norm

‖(t1, t2, t3)‖p = (|t1|p + |t2|p + |t3|p)
1
p ,

then, after some computations, one can verify that Hlawka’s inequality (2) does
not hold for every x, y, z ∈ X for any p > log1.5 3 ≈ 2.71 (see Witsenhausen
[46]).

Each inner product space is a Hlawka space (see e.g. Mitrinović et al.
[26, Chapter XVIII, Section 4]). Moreover, every two dimensional space is a
Hlawka space (see Kelly et al. [22]). It is also easy to observe that further
examples of Hlawka spaces are L1 or, more generally, L1(X,μ), where (X,μ)
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is an arbitrary space with measure. Consequently, by a theorem of Lindenstr-
auss [24] each two-dimensional real normed linear space E is isomorphically
isometric to a subset of L1([0, 1]) and therefore E is a Hlawka space (this
was independently proved in an elementary way in [22]). Moreover, Witsen-
hausen [46, Corollary 1.2] showed that the space Lp(0, 1) is a Hlawka space
for 1 ≤ p ≤ 2. Therefore, one can see that all Banach spaces having the
property that all its finite dimensional subspaces can be embedded linearly
and isometrically in the space Lp([0, 1]), with some 1 ≤ p ≤ 2 are Hlawka
spaces (see Niculescu and Persson [28] and Lindenstrauss and Pe�lczyński [25]).
Further, Witsenhausen [47] proved that a finite-dimensional real space with
piecewise linear norm is embeddable in L1 if and only if it is a Hlawka space.
However, Neyman [27] showed that in the general case embeddability in L1

does not characterize Hlawka spaces. Concluding, to the best of the author’s
knowledge, no characterization of Hlawka spaces is presently known.

It is worth noting that identity (1) does not hold in every Hlawka space.
In fact, one can check that (1) implies the parallelogram law:

‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2

(put x = y = u − v, z = 2v in (1)), which characterizes inner product spaces
among all normed linear spaces (see Fréchet [10] and Jordan and von Neumann
[19]).

The present paper is devoted to the functional inequality:

f(x + y) + f(y + z) + f(x + z) ≤ f(x + y + z) + f(x) + f(y) + f(z), (3)

for a real-valued unknown mapping f defined on an Abelian group or on a
vector space (Sect. 2) and then, in Sect. 3, on the real line. Let us point out
that this functional inequality already appeared in the year 1978 in paper [47]
of Witsenhausen.

A related functional equation:

f(x + y) + f(y + z) + f(x + z) = f(x + y + z) + f(x) + f(y) + f(z) (4)

and also a few more general equations were studied by Kannappan [20] in 1995.
Witsenhausen [47, Lemma 1] proved that each positively homogeneous solu-

tion of (3) defined on R
n is a support function of a centrally symmetric convex

body (i.e. of a nonvoid compact convex set). Moreover, solutions of inequal-
ity (3) play a significant role in the characterization of zonotopes (see e.g.
Witsenhausen [46,47]).

Let us note that several functional inequalities related to inequality (3)
have already been discussed by other authors, mainly in connection with sub-
additivity and convexity. In 1965 Popoviciu [31] provided a characterization
of convex mappings defined on an interval I as continuous solutions of the
inequality:
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where n ≥ 3 and 2 ≤ k < n are fixed integers and x1, . . . , xn ∈ I are arbitrary.
A particular case of Popoviciu’s inequality (with n = 3 and k = 2) is the
inequality:

2
[
f

(
x + y

2

)
+ f

(
y + z

2

)
+ f

(
x + z

2

)]

≤ 3f

(
x + y + z

3

)
+ f(x) + f(y) + f(z),

which plays a significant role in the theory of convex functions (see Niculescu
and Persson [28]).

Further results for a system of related inequalities are due to Vasić and
Adamović [42], Kečkić [21], Pečarić [30], among others.

Burkill [7] considered the expression:

H(f) = f(X ∪ Y ∪ Z) − f(X ∪ Y ) − f(X ∪ Z) − f(Y ∪ Z)
+f(X) + f(Y ) + f(Z).

These studies were developed further by Baston [5], a related result for twice-
differentiable real functions was proved by Vasić and Stanković [43].

Our purpose is to contribute to the above-mentioned studies. We will
describe all solutions of functional inequality (3) under some additional con-
ditions.

Note that the particular solutions of inequality (3) are f = ‖ · ‖ on a
Hlawka space and f = ‖ · ‖2 on a Hilbert space. More generally, it is clear
that for an arbitrary additive functional a : X → R and for each additive oper-
ator L : X → Y having its values in a Hlawka space or in a Hilbert space,
respectively, both mappings

X 	 x 
→ f(x) = ‖Lx‖ + a(x) ∈ R

and

X 	 x 
→ f(x) = ‖Lx‖2 + a(x) ∈ R

satisfy (3). In Sect. 2 we prove the converse statements under some homoge-
neity assumptions.
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2. Inequality (3) on linear spaces

We will deal with functional inequality (3) under some additional homogene-
ity assumptions. In particular we will provide conditions which are necessary
and sufficient for a representation of solutions of inequality (3) as a sum of an
additive functional and a norm or a square of a norm of a continuous linear
operator.

A subadditive mapping f : X → R defined on an arbitrary Abelian group
X which satisfies the homogeneity condition:

f(2x) = 2f(x), x ∈ X (5)

is called sublinear. Let us recall a result of Ger [14] which characterizes sub-
linear mappings on Abelian groups.

Theorem 1 (Ger [14]). Assume that (X, +) is an Abelian group and f : X → R

is an even and sublinear mapping. Then there exist a Banach space E and an
additive mapping A : X → E such that f can be represented in the form:

f(x) = ‖A(x)‖, x ∈ X. (6)

We begin with a lemma.

Lemma 1. Assume that (X, +) is an Abelian group and f : X → R is arbitrary.
If f satisfies functional inequality (3) jointly with f(0) = 0, then there exist
an additive function a : X → R and an even function g : X → R such that
f = a + g. Moreover, the functional inequality

2g(s + t) − 2g(s − t) ≤ g(2s) + g(2t) − g(2s − 2t) (7)

is satisfied for all s, t ∈ X.

Proof. Let us define a : X → R as

a(x) =
f(x) − f(−x)

2
for every x ∈ X. Next, substitute z = −(x + y) in inequality (3) to deduce
that

a(x + y) ≤ a(x) + a(y)

for all x, y ∈ X. Therefore, since a is odd, a is additive. Note also that the func-
tion g = f −a solves inequality (3) and is even. Next, fix arbitrary s, t ∈ X and
apply (3) for the mapping g with the substitution (x, y, z) → (s − t, 2t, s − t).
We arrive at

2g(s + t) + g(2s − 2t) = g(x + y) + g(y + z) + g(x + z)
≤ g(x + y + z) + g(x) + g(y) + g(z)
= g(2s) + 2g(s − t) + g(2t).

�
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Our next statement generalizes an earlier result of Witsenhausen
[47, Lemma 1].

Corollary 1. Assume that (X, +) is an Abelian group and f : X → R fulfils con-
dition (5). If f satisfies functional inequality (3), then there exist a Banach
space E and additive mappings A : X → E and a : X → R such that f can be
represented in the form:

f(x) = ‖A(x)‖ + a(x), x ∈ X. (8)

Proof. Clearly, f(0) = 0. In view of Lemma 1 and Theorem 1 of Ger the proof
will be completed if we prove that each mapping g which solves (7) is sublinear.
But this follows immediately from inequality (7) and from the homogeneity
condition (5). �

To ensure that each mapping which is of the form (8) solves (3) we need
to show that if the group X appearing in Corollary 1 is a Hlawka space, then
the space E postulated by Theorem 1 of Ger can be taken as a Hlawka space
as well.

Theorem 2. Assume that (X, +) is an Abelian group and f : X → R is arbi-
trary. Then f satisfies functional inequality (3) jointly with (5) if and only if
there exist a Banach space E, an additive subgroup H of E such that inequal-
ity (2) holds true for all x, y, z ∈ H and additive mappings A : X → H and
a : X → R such that f can be represented in the form (8).

Proof. The “if” part is obvious.
To prove the “only if” part let us apply Corollary 1 to derive that func-

tion f has the representation (8) with some Banach space E. Observe that
H := A(X) is an additive subgroup of E. Therefore, to finish the proof we
need to check the validity of (2) on H. For arbitrarily fixed x, y, z ∈ H let us
pick u, v, w ∈ X such that

x = A(u), y = A(v), z = A(w).

We have

‖x + y‖ + ‖y + z‖ + ‖x + z‖
= ‖A(u + v)‖ + ‖A(v + w)‖ + ‖A(u + w)‖
= f(u + v) + f(v + w) + f(u + w)

−a(u + v) − a(v + w) − a(u + w)
≤ f(u + v + w) + f(u) + f(v) + f(w)

−a(u + v + w) − a(u) − a(v) − a(w)
= ‖A(u + v + w)‖ + ‖A(u)‖ + ‖A(v)‖ + ‖A(w)‖
= ‖x + y + z‖ + ‖x‖ + ‖y‖ + ‖z‖,

as claimed. �
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If in the foregoing theorem we assume additionally that the domain of f is
a Banach space and moreover f is continuous, then we easily see that H is a
linear subspace of E and additionally both mappings A and a are continuous.

Corollary 2. Assume that X is a Banach space and f : X → R is continuous.
Then f satisfies functional inequality (3) jointly with f(2x) = 2f(x) for all
x ∈ X if and only if there exist a Hlawka space H, a continuous linear operator
A : X → H and a continuous linear functional a : X → R such that f can be
represented in the form (8).

If X and Y are arbitrary Abelian groups, then a mapping q : X → Y is
called quadratic if and only if it satisfies the Jordan–von Neumann functional
equation:

q(x + y) + q(x − y) = 2q(x) + 2q(y)

for all x, y ∈ X. It is well known that if the group Y is uniquely divisible by
2, then for each quadratic mapping q : X → Y there exists a biadditive and
symmetric mapping B : X × X → Y such that

q(x) = B(x, x)

for all x ∈ X (see Aczél and Dhombres [1, Chapter 11, Proposition 1], compare
also with Baron and Volkmann [4, Proposition]). Moreover, if additionally X
is a Hilbert space, Y = R and function q is continuous, then B is a bilinear
form and, consequently, there exists a continuous linear operator L : X → X
such that q can be represented in the form

q(x) = ‖Lx‖2

for all x ∈ X.
In the next theorem we will provide a characterization of quadratic map-

pings via inequality (3).

Theorem 3. Assume that (X, +) is an Abelian group and f : X → R. Then f
satisfies functional inequality (3) jointly with

f(2x) = 4f(x), x ∈ X (9)

if and only if f is quadratic. Moreover, if this is the case, then Eq. (4) is
satisfied for all x, y, z ∈ X.

Proof. First we will prove the “only if” part. Using Lemma 1 and by our
assumptions we easily see that the additive mapping a postulated by Lemma 1
vanishes. Next, from (7) we derive the inequality

f(s + t) + f(s − t) ≤ 2f(s) + 2f(t)

for all s, t ∈ X. Fix arbitrary u, v ∈ X and apply this estimate for s = u+v, t =
u − v to obtain

4f(u) + 4f(v) = f(2u) + f(2v) ≤ 2f(u + v) + 2f(u − v)
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for all u, v ∈ X. We reached two reverse inequalities and therefore f is qua-
dratic.

To verify the “if” part assume that f : X → R is a quadratic mapping and
fix arbitrary x, y, z ∈ X. It is clear that (9) is satisfied. Let B : X × X → R be
a biadditive and symmetric mapping such that

f(x) = B(x, x), x ∈ X.

Utilizing properties of B one can eventually transform (4) equivalently into an
identity. Let us skip the straightforward calculation. �

Corollary 3. Assume that (X, +) is a Hilbert space and f : X → R is con-
tinuous. Then f satisfies functional inequality (3) jointly with (9) if and only
if there exists a continuous linear operator L : X → X such that f can be
represented in the form:

f(x) = ‖Lx‖2

for all x ∈ X.

We conclude this section with a description of solutions of inequality (3)
under a more general homogeneity condition:

f(2x) = 3f(x) + f(−x), x ∈ X. (10)

It is clear that this condition is in particular fulfilled by every odd mapping
satisfying (5) and by every even mapping satisfying (9).

Theorem 4. Assume that (X, +) is an Abelian group and f : X → R. Then
f satisfies functional inequality (3) jointly with (10) if and only if there exist
an additive mapping a : X → R and a quadratic mapping q : X → R such that
f = a + q.

Proof. The “if” part is obvious.
To prove the “only if” part, let us define mappings a : X → R and q : X → R

by the formulas

a(x) =
f(x) − f(−x)

2
, q(x) =

f(x) + f(−x)
2

, x ∈ X.

By Lemma 1 we get that a is additive. Next, it is easy to see that condition (10)
guarantees that q satisfies (9). Moreover, one can check that q fulfils inequality
(3). Consequently, by Theorem 3 the mapping q is quadratic. �

Corollary 4. Assume that (X, +) is a Hilbert space and f : X → R is contin-
uous. Then f satisfies functional inequality (3) jointly with (10) if and only
if there exist a continuous linear operator L : X → X and a continuous linear
functional a : X → R such that f can be represented in the form:

f(x) = ‖Lx‖2 + a(x)

for all x ∈ X.
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3. Inequality (3) on the real line

In what follows we will deal with solutions of functional inequality (3) on the
real line with possibly weak additional assumptions (from now on no homoge-
neity is imposed upon f). We will be considering the real line R equipped with
the standard Lebesgue measure and we denote by R the set R ∪ {−∞, +∞}.
Our main tool in this section are the Dini (extreme unilateral) derivatives.

For an arbitrary mapping f : R → R the Dini derivatives are defined as
follows:

D±f(x) = lim sup
h→0±

f(x + h) − f(x)
h

, D±f(x) = lim inf
h→0±

f(x + h) − f(x)
h

for every x ∈ R.
It is clear that the Dini derivatives can attain infinite values. Therefore,

later in this section each inequality which involves Dini derivatives is to be
understood that it is valid provided that both its sides are meaningful (i.e. no
indefinite expressions of the form ∞ − ∞ appears).

Banach proved that if f is measurable, then all Dini derivatives of f are
measurable as well (see e.g. Saks [34, Chapter IV.4]).

Let us also recall Denjoy–Young–Saks Theorem (see e.g. Saks [34, Chapter
IX.4]).

Theorem 5 (Denjoy–Young–Saks). Assume that I is an interval and f : I → R

is an arbitrary function. Then there exists a set of measure zero C ⊂ I such
that for all x ∈ I \ C exactly one of the following cases holds true:

(i) f is differentiable at x;
(ii) D−f(x) = D+f(x) is finite, D−f(x) = +∞ and D+f(x) = −∞;

(iii) D+f(x) = D−f(x) is finite, D+f(x) = +∞ and D−f(x) = −∞;
(iv) D−f(x) = D+f(x) = −∞ and D−f(x) = D+f(x) = +∞.

We will begin the study of functional inequality (3) on the real line with
some lemmas.

Lemma 2. Assume that f : R → R satisfies functional inequality (3) for all
x, y, z ∈ R jointly with f(0) = 0. Then:

D+f(x) + D+f(−x) ≤ 2D+f(0), (11)
2D+f(0) ≤ D+f(x) + D+f(−x) + D+f(0) − D−f(0), (12)

2D−f(0) ≤ D−f(x) + D−f(−x), (13)
D−f(x) + D−f(−x) + D−f(0) − D+f(0) ≤ 2D−f(0), (14)

for all x ∈ R.

Proof. We will prove (11) and (12) only. Proofs of (13) and (14) can be
obtained by a modification of the original reasonings.
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Fix arbitrary x ∈ R and y > 0 and apply (3) with substitution z = −x. We
see that

f(x + y) − f(x)
y

+
f(−x + y) − f(−x)

y
≤ 2

f(y)
y

. (15)

Next, let us pick a sequence (yn)n∈N (possibly depending upon x) of positive
real numbers which tend to zero and

lim
n→+∞

f(−x + yn) − f(−x)
yn

= D+f(−x).

On replacing yn by its suitable subsequence we may assume additionally that
both sequences

f(x + yn) − f(x)
yn

,
f(yn)

yn

are convergent in R. Next, apply (15) for y = yn, pass n → +∞ and esti-
mate the two remaining limits by D+f(x) and 2D+f(0), respectively, to derive
inequality (11).

Further, for arbitrarily fixed x ∈ R and y > 0, apply (3) with substitution
(x, y, z) → (x + y,−y,−x + y). We reach

2
f(2y)

2y
≤ f(x + y) − f(x)

y
+

f(−x + y) − f(−x)
y

+
f(y)

y
− f(−y)

−y
. (16)

This time we choose a sequence (yn)n∈N of positive real numbers tending to
zero such that

lim
n→+∞

f(x + yn) − f(x)
yn

= D+f(x)

and the remaining limits are convergent. Applying an analogous reasoning as
before for estimate (16) we prove inequality (12). �

Lemma 3. Assume that f : R → R satisfies functional inequality (3) for all
x, y, z ∈ R jointly with f(0) = 0. If |D+f(0)| < ∞, then the mapping

−D+f + D+f(0) : R → R

is subadditive; and if |D−f(0)| < ∞, then the mapping

D−f − D−f(0) : R → R

is subadditive.

Proof. Let us keep x, z ∈ R temporarily fixed. For each y > 0 we deduce from
(3) the following inequality:

f(x + y) − f(x)
y

+
f(z + y) − f(z)

y
≤ f(x + z + y) − f(x + z)

y
+

f(y)
y

,

and its reverse for each y < 0.
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Now, pick a sequence (yn)n∈N of positive real numbers which tend to zero
such that

lim
n→+∞

f(x + z + yn) − f(x + z)
yn

= D+f(x + z).

By passing y → 0+ we obtain

D+f(x) + D+f(z) ≤ D+f(x + z) + D+f(0). (17)

Analogously, in case y < 0 we can take a sequence (yn)n∈N of positive real
numbers tending to zero such that

lim
n→+∞

f(x + z + yn) − f(x + z)
yn

= D−f(x + z),

to get

D−f(x) + D−f(z) ≥ D−f(x + z) + D−f(0). (18)

From estimates (17) and (18) we easily see that if the respective Dini deriva-
tive is finite at the origin, then the mapping D+f − D+f(0) is superadditive
whereas the mapping D−f − D−f(0) is subadditive, respectively. �

Remark 1. It is well known that for an arbitrary function f the equalities
D±f = +∞ and D±f = −∞ can hold on a set which is at most count-
able (see e.g. Saks [34]). Therefore both subadditive mappings spoken of in
the foregoing lemma are strictly greater than −∞ outside a countable set.
Consequently, if we weaken assumptions of this lemma to: D+f(0) < +∞ or
D−f(0) > −∞, then the assertion should be replaced by:

there exists a countable set C ⊂ R such that the mapping −D+f + D+f(0)
is well-defined on R\C and is subadditive on R\C, or

then the mapping D−f −D−f(0) is well-defined on R\C and is subadditive
on R\C, respectively.

Now, we will recall a useful property of subadditive functions that can
attain infinite values, which was first proved by Rosenbaum [33] (see also Hille
and Phillips [16, Theorem 7.3.3]).

Theorem 6 (Rosenbaum). If a subadditive measurable function ϕ : R → R sat-
isfies ϕ(x0) < +∞ for some x0 < 0, then either ϕ(x) = +∞ for almost all
x > 0 or ϕ < +∞ on R.

From this theorem we deduce the following useful fact.

Proposition 1. Assume that ϕ : R → R is a subadditive measurable function.
If ϕ(t) < +∞ for some t < 0 and for some t > 0, then either:
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(i) ϕ(x) = +∞ for almost all x ∈ R; or
(ii) ϕ = −∞ on R; or

(iii) ϕ is finite on R.

Proof. Let us apply Theorem 6 of Rosenbaum twice, for ϕ and then for
ϕ replaced by a map R 	 t 
→ ϕ(−t). We deduce that either ϕ(x) = +∞
for almost all x ∈ R or ϕ < +∞ on R. Now, assume that the second possibil-
ity holds true and ϕ(t0) = −∞ for some t0 ∈ R. Then for arbitrary t ∈ R we
have

f(t) = f(t − t0 + t0) ≤ f(t − t0) + f(t0) = −∞.

Therefore, we see that either ϕ = −∞ or ϕ > −∞ on R, which is precisely
what we need. �

Lemma 4. Assume that f : R → R is measurable and satisfies functional
inequality (3) for all x, y, z ∈ R jointly with f(0) = 0. If all the Dini derivatives
of f are finite at the origin and additionally at least one of the Dini derivatives
is finite at a negative point and at a positive point, then either f is differen-
tiable almost everywhere and moreover D−f and D+f are finite everywhere,
or D−f = D+f = −∞ and D−f = D+f = +∞ almost everywhere on R.

Proof. Due to Lemma 2 we get that if D±f is finite at a negative point and
at a positive point, then the same is true for D±f , and vice versa. Thus,
at least one of the subadditive mappings postulated by Lemma 3 fulfils the
assumptions of Proposition 1. Therefore, we infer that either:
(a) D−f = +∞ almost everywhere on R or D+f = −∞ almost everywhere

on R;
or
(b) at least one of the mappings D−f,D+f is finite (everywhere).

In case (a), by Lemma 2, either D−f = −∞ and D−f = +∞ almost every-
where, or D+f = −∞ and D+f = +∞ almost everywhere. To finish the proof
it is enough to apply the Denjoy–Young–Saks Theorem to obtain equalities
D±f = −∞ and D±f = +∞ almost everywhere.

In case (b), by Lemma 2 we see that both mappings D+f and D+f , or
D−f and D−f are finite everywhere. Next, by the Denjoy–Young–Saks Theo-
rem we deduce that the equalities D+f = D−f and D−f = D+f hold almost
everywhere, which gives us that f is differentiable almost everywhere. In par-
ticular all Dini derivatives of f are finite at some negative point and at some
positive point. Having this, we can repeat the preceding argumentation involv-
ing Lemma 3 and Proposition 1 to deduce that both D−f and D+f are finite
everywhere, as claimed. �

Remark 2. In the foregoing proof we did not use the finiteness of one of the
Dini derivatives at a positive and at a negative point in its full strength. An
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inspection of the proof shows that it is enough to assume that one of the
lower derivatives is strictly smaller than +∞ or one of the upper derivatives
is strictly greater than −∞ at a positive and at a negative point. The same is
true for all our subsequent results which involves assumption (∗) below. How-
ever, it is well known that each of the equalities D±f = −∞ and D±f = +∞
can hold only on a countable set. Therefore, the possible usefulness of this
observation seems to be limited.

In what follows we will need to impose some additional assumptions upon
a mapping f : R → R:
(∗) The function f is measurable, f(0) = 0, all the Dini derivatives of f are

finite at the origin, at least one of them is finite at a negative point and
at a positive point and at least one of them is finite on a set of positive
measure.

In what follows we will need a special case of a result of Gajda [12, Corollary
3.1]. Let us mention that a similar result was obtained earlier by Ger [13] with
constant 3C instead of C in formula (20) below.

Theorem 7 (Gajda [12]). Assume that g : R → R and C ≥ 0 are arbitrary. If
the estimate

|g(x + y) − g(x) − g(y)| ≤ C (19)

is satisfied for almost all (x, y) ∈ R × R, then there exists a unique additive
mapping a : R → R such that

|g(x) − a(x)| ≤ C (20)

for almost all x ∈ R.

In the next lemma we prove a uniform approximation almost everywhere
of the derivative of f .

Lemma 5. Assume that f : R → R fulfils (∗). If f satisfies functional inequality
(3) for all x, y, z ∈ R, then f is differentiable almost everywhere. Moreover,
there exists a constant A ∈ R such that

|f ′(x) − 2Ax − B| ≤ C (21)

for almost all x ∈ R, where B = 1
2 [D+f(0) + D−f(0)] and C = 1

2 [D+f(0) −
D−f(0)].

Proof. Lemma 4 and our assumption (∗) ensure that f is differentiable almost
everywhere. Denote by K ⊂ R the set on which f is differentiable and keep
x, y ∈ K temporarily fixed. By Lemma 3 we obtain the inequalities

f ′(x) + f ′(y) ≤ f ′(x + y) + D+f(0)

and

f ′(x) + f ′(y) ≥ f ′(x + y) + D−f(0).
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Therefore, we reach the estimate

D−f(0) ≤ f ′(x) + f ′(y) − f ′(x + y) ≤ D+f(0). (22)

Next, define the mapping g : R → R as follows. Put g(t) = f ′(t) − B for all
t ∈ K, where the constant B is specified in the assertion, and put g(t) = 0
for t ∈ R \ K. Then (22) easily implies that inequality (19) is valid for all
(x, y) ∈ K × K, where C is given in the assertion. By Theorem 7 of Gajda
we obtain the existence of a unique additive mapping a : R → R such that
estimate (20) holds true for almost all x ∈ R. One can see that since g is in
particular measurable, then a is bounded on a set of a positive measure and
thus it cannot be a discontinuous additive mapping (for a comprehensive study
of additive functions on the real line, including the discontinuous ones, see e.g.
Kuczma [23]). Therefore, there exists a constant A ∈ R such that a(x) = 2Ax
for all x ∈ R. Consequently, we have

|g(x) − 2Ax| ≤ C

for almost all x ∈ R, which is equivalent to (21). �
The next theorem is the main result of this section.

Theorem 8. Assume that f : R → R fulfils (∗). If f satisfies functional inequal-
ity (3) for all x, y, z ∈ R, then there exist a constant A ∈ R and a mapping
r : R → R such that

f(x) = Ax2 + Bx + r(x)

and

|r(x)| ≤ C|x| (23)

for all x ∈ R, where B = 1
2 [D+f(0) + D−f(0)] and C = 1

2 [D+f(0) −D−f(0)].

Proof. By Lemma 4 we infer that at least two Dini derivatives of f are finite
everywhere. Therefore, f is equal to the Henstock integral of one of them
(see e.g. Fremlin [11, 483X(m), page 232]). Clearly, f is measurable, so are
all its Dini derivatives, and thus the Henstock integral of f ′ coincides with its
Lebesgue integral. Next, from Lemma 5 we deduce the estimate

−C ≤ f ′(x) − 2Ax − B ≤ C.

Therefore, we get

− Cy ≤ f(y) − Ay2 − By =

y∫

0

f ′(x) dx − Ay2 − By ≤ Cy (24)

if y > 0, together with the reverse inequality for y < 0. In order to finish the
proof it is enough to define r : R → R as

r(y) = f(y) − Ay2 − By

for all y ∈ R. The estimate (23) can be easily derived from inequality (24). �
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The following corollary is straightforward.

Corollary 5. Assume that f : R → R satisfies (∗) and D+f(0) ≤ D−f(0). Then
f satisfies functional inequality (3) for all x, y, z ∈ R if and only if there exist
constants A,B ∈ R such that f(x) = Ax2 + Bx for all x ∈ R.

We will terminate the paper with two easy examples illustrating the neces-
sity of some of our assumptions.

Example 1. Note that each mapping f : R → [3, 4], smooth or not, solves (3).
Therefore, the assumption appearing in most of our statements that f(0) = 0
cannot be dropped.

Next, if a : R → R is a discontinuous additive function, then both mappings
f(x) = a(x) and f(x) = a(x)x for all x ∈ R solve (3). Therefore, even in the
case f(0) = 0 we see that the regularity assumptions we have imposed upon
f cannot be omitted as well.

Open Access. This article is distributed under the terms of the Creative Commons Attribu-
tion License which permits any use, distribution, and reproduction in any medium, provided
the original author(s) and the source are credited.
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[8] Cho, Y.J., Matić, M., Pečarić, J.E.: Inequalities of Hlawka’s type in n-inner product
spaces. Commun. Korean Math. Soc. 17(4), 583–592 (2002)
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[18] Janous, W.: The Hlawka–Djoković inequality and points in unitary spaces. Gen.

Math. 15(1), 67–74 (2007)
[19] Jordan, P., Neumann, J.von : On inner products in linear, metric spaces. Ann. Math.

(2) 36, 719–723 (1935)
[20] Kannappan, Pl.: Quadratic functional equation and inner product spaces. Results

Math. 27(3–4), 368–372 (1995)
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