Skip to main content
Log in

Weighted \(W^{1,2}_{p(\cdot )}\)-Estimate for Fully Nonlinear Parabolic Equations with a Relaxed Convexity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We devote this paper to global estimate in weighted variable exponent Sobolev spaces for fully nonlinear parabolic equations under a relaxed convexity condition. It is assumed that the associated variable exponent is log-Hölder continuous, the weight belongs to certain Muckenhoupt class concerning the variable exponent, the leading part of nonlinearity satisfies a relaxed convexity in Hessian and is of VMO condition in space-time variables, and the boundary of underlying domain satisfies \(C^{1,1}\)-smooth. Our key strategy is to utilize a unified approach based on the generalized versions of Fefferman–Stein theorem of the sharp functions and extrapolation to establish the estimates of \(D^{2}u\) and \(D_{t} u\) within the framework of weighted variable exponent Lebesgue spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Baroni, P., Bögelein, V.: Calderón-Zygmund estimates for parabolic \(p(x, t)\)-Laplacian systems. Rev. Mat. Iberoam 30, 1355–1386 (2014)

    Article  MathSciNet  Google Scholar 

  2. Byun, S.S., Ok, J., Wang, L.: \(W^{1, p(\cdot )}\)-regularity for elliptic equations with measurable coefficients in nonsmooth domains. Commun. Math. Phys. 329(3), 937–958 (2014)

    Article  Google Scholar 

  3. Byun, S.S., Lee, M., Ok, J.: \(W^{2, p(\cdot )}\)-regularity for elliptic equations in nondivergence form with BMO coefficients. Math. Ann. 363(3–4), 1023–1052 (2015)

    Article  MathSciNet  Google Scholar 

  4. Byun, S.S., Lee, M., Palagachev, D.K.: Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations. J. Differ. Equ. 260, 4550–4571 (2016)

    Article  MathSciNet  Google Scholar 

  5. Byun, S.S., Lee, M., Ok, J.: Nondivergence parabolic equations in weighted variable exponent spaces. Trans. Am. Math. Soc. 370, 2208–2293 (2018)

    MathSciNet  Google Scholar 

  6. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math. 130(2), 189–213 (1989)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations. American Mathematical Society Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

  8. Crandall, M.G., Kocan, M., Świech, A.: \(L^{p}\)-theory for fully nonlinear uniformly parabolic equations. Commun. Partial Differ. Equ. 25(11–12), 1997–2053 (2000)

    Article  Google Scholar 

  9. Cruz-Uribe, D., Martell, J., Pérez, C.: Weights, extrapolation and the theory of Rubio de Francia. Operator Theory: Advances and Applications, vol. 215. Birkhäuser/Springer Basel AG, Basel (2011)

  10. Cruz-Uribe, D., Wang, L.-A.D.: Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Am. Math. Soc. 369(2), 1205–1235 (2017)

    Article  MathSciNet  Google Scholar 

  11. Diening, L., R\(\mathring{u}\)žička, M.: Calderón–Zygmund operators on generalized Lebesgue spaces \(L^{p(\cdot )}\) and problems related to fluid dynamics, J. Reine Angew. Math. 563, 197–220 (2003)

  12. Diening, L., Harjulehto, P., Has̈tö, P., R\(\mathring{u}\)žička, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg (2011)

  13. Diening, L., Has̈tö, P.: Muckenhoupt weights in variable exponent spaces, preprint (2011)

  14. Diening, L., Lengeler, D., R\(\mathring{\text{u}}\)žička, M.: The Stokes and Poisson problem in variable exponent spaces. Complex Var. Elliptic Equ. 56(7–9), 789–811 (2011)

  15. Dong, H.J., Krylov, N.V., Li, X.: On fully nonlinear elliptic and parabolic equations with VMO coefficients in domains. Algebra I Analiz 24(1), 53–94 (2012)

    MathSciNet  Google Scholar 

  16. Dong, H.J., Krylov, N.V.: On the existence of smooth solutions for fully nonlinear parabolic equations with measurable “coefficients’’ without convexity assumptions. Commun. Partial Differ. Equ. 38, 1038–1068 (2013)

    Article  MathSciNet  Google Scholar 

  17. Dong, H.J., Krylov, N.V., Li, X.: On full nonlinear elliptic and parabolic equations with coefficients in domains. St. Petersburg Math. J. 24, 39–63 (2013)

    Article  MathSciNet  Google Scholar 

  18. Dong, H.J., Kim, D.: On \(L^{p}\)-estimates for elliptic and parabolic equations with \(A_{p}\) weights. Trans. Am. Math. Soc. 370(7), 5081–5130 (2018)

    Article  Google Scholar 

  19. Dong, H.J., Krylov, N.V.: Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces. Calc. Var. Partial Differ. Equ. 58(4), 145, 32 (2019)

    Article  MathSciNet  Google Scholar 

  20. Escauriaza, L.: \(W^{2, n}\) a priori estimates for solutions to fully non-linear equations. Indiana Univ. Math. J. 42(2), 413–423 (1993)

    Article  MathSciNet  Google Scholar 

  21. Fefferman, C., Stein, S.M.: \(H^{p}\) spaces of several variables. Acta Math. 129, 63–75 (1972)

    Article  Google Scholar 

  22. Fujii, N.: A proof of the Fefferman–Stein–Strömberg inequality for the sharp maximal functions. Proc. Am. Math. Soc. 106(2), 371–377 (1989)

    Google Scholar 

  23. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton University Press, vol. 105, Princeton (1983)

  24. Ho, K.P.: Singular integral operators, John–Nirenberg inequalities and Triebel–Lizorkin type spaces on weighted Lebesgue spaces with variable exponents. Rev. Un. Mat. Argent. 57, 85–101 (2016)

    MathSciNet  Google Scholar 

  25. Krylov, N.V., Safonov, M.V.: A property of the solutions of parabolic equations with measurable coefficients (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 161–175 (1980)

    MathSciNet  Google Scholar 

  26. Krylov, N.V.: Parabolic and elliptic equations with VMO coefficients. Commun. Partial Differ. Equ. 32(1–3), 453–475 (2007)

    Article  MathSciNet  Google Scholar 

  27. Krylov, N.V.: On Bellman’s equations with VMO coefficients. Methods Appl. Anal. 17(1), 105–121 (2010)

    Article  MathSciNet  Google Scholar 

  28. Krylov, N.V.: On the existence of smooth solutions for fully nonlinear elliptic equations with measurable “coefficients’’ without convexity assumptions. Methods Appl. Anal. 19(2), 119–146 (2012)

    Article  MathSciNet  Google Scholar 

  29. Krylov, N.V.: On the existence of \(W^{2}_{p}\) solutions for fully nonlinear elliptic equations under relaxed convexity assumptions. Commun. Partial Differ. Equ. 38(4), 687–710 (2013)

    Article  Google Scholar 

  30. Krylov, N.V.: On the existence of \(W^{1,2}_{p}\) solutions for fully nonlinear parabolic equations under either relaxed or no convexity assumptions, Nonlinear analysis in geometry and applied mathematics. Part 2, 103–133, Harv. Univ. Cent. Math. Sci. Appl. Ser. Math., 2, Int. Press, Somerville, MA (2018)

  31. Krylov, N.V.: On the existence of W2p solutions for fully nonlinear elliptic equations under either relaxed or no convexity assumptions. Commun. Contemp. Math. 19(6), 1750009, 39 (2017)

    Article  Google Scholar 

  32. Martell, J.: Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia Math. 161(2), 113–145 (2004)

    Article  MathSciNet  Google Scholar 

  33. Prasath, V.B.S., Vorotnikov, D.: On time adaptive critical variable exponent vectorial diffusion flows and their applications in image processing I: analysis. Nonlinear Anal. 168, 176–197 (2018)

    Article  MathSciNet  Google Scholar 

  34. Rubio de Francia, J.L.: Factorization theory and \(A_{p}\) weights. Am. J. Math. 106(3), 533–547 (1984)

    Article  Google Scholar 

  35. R\(\mathring{u}\)žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory, Springer Lecture Notes in Mathematics vol. 1748, Springer-Verlag, Berlin (2000)

  36. Tian, H., Zheng, S.Z.: The \(W^{1,2}_{(p, q)}\)-solvability for a class of full nonlinear parabolic equations. J. Elliptic Parabol. Equ. 7, 25–45 (2021)

    Article  MathSciNet  Google Scholar 

  37. Winter, N.: \(W^{2, p}\) and \(W^{1, p}\)-estimates at the boundary for solutions of fully nonlinear uniformly elliptic equations. Z. Anal. Anwend 28(2), 129–164 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wang, L.: On the regularity theory of fully nonlinear parabolic equations. Bull. Am. Math. Soc. (N.S.) 22(1), 107–114 (1990)

    Article  MathSciNet  Google Scholar 

  39. Zhang, J.J., Zheng, S.Z.: Lorentz estimates for full nonlinear parabolic and elliptic equations. Nonlinear Anal. 148, 106–125 (2017)

    Article  MathSciNet  Google Scholar 

  40. Zhang, J.J., Zheng, S.Z., Feng, Z.S.: Weighted \(L^{p(\cdot )}\)-regularity for fully nonlinear parabolic equations. Calc. Var. Partial Differ. Equ. 59(6), 190, 30 (2020)

    Article  Google Scholar 

  41. Zhang, J.J., Zheng, S.Z.: Weighted Lorentz estimates for fully nonlinear elliptic equations with oblique boundary data. J. Elliptic. Parabol. Equ. 8, 255–281 (2022)

    Article  MathSciNet  Google Scholar 

  42. Zhikov, V.V., Kozlov, S.M., Oleǐnik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)

    Google Scholar 

Download references

Funding

H. Tian was supported by National Natural Science Foundation of China Grant No. 11901429, and S. Zheng was supported by National Natural Science Foundation of China Grant No. 12071021.

Author information

Authors and Affiliations

Authors

Contributions

Hong Tian and Shenzhou Zheng wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Shenzhou Zheng.

Ethics declarations

Conflict of Interest

The authors declare no that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Zheng, S. Weighted \(W^{1,2}_{p(\cdot )}\)-Estimate for Fully Nonlinear Parabolic Equations with a Relaxed Convexity. Mediterr. J. Math. 21, 120 (2024). https://doi.org/10.1007/s00009-024-02659-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-024-02659-4

Keywords

Mathematics Subject Classification

Navigation