Skip to main content
Log in

W 1, p(·)-Regularity for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We establish global W 1, p(·)-estimates for second order elliptic equations in divergence form under the natural assumption that p(·) is log-Hölder continuous. To this end, we assume that the coefficients are measurable in one variable and have small BMO semi-norms in the other variables and the boundary of the domain is Reifenberg flat. Our work is an optimal and natural extension of W 1,p-regularity for such equations with merely measurable coefficients beyond Lipschitz domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Mingione G.: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Acerbi E., Mingione G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136(2), 285–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Antontsev S.N., Shmarev S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515545 (2005)

    Article  MathSciNet  Google Scholar 

  4. Byun S.: Elliptic equations with BMO coefficients in Lipschitz domains. Trans. Am. Math. Soc. 357(3), 1025–1046 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Byun S., Wang L.: Elliptic equations with BMO coefficients in Reifenberg domains. Comm. Pure Appl. Math. 57(10), 1283–1310 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Byun S., Wang L.: Elliptic equations with measurable coefficients in Reifenberg domains. Adv. Math. 225(5), 2648–2673 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen Y., Levine S., Rao R.: Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 66, 13831406 (2006)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli L.A., Peral I.: On W 1, p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 51(1), 1–21 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chipot M., Kinderlehrer D., Vergara-Caffarelli G.: Smoothness of linear laminates. Arch. Ration. Mech. Anal. 96, 81–96 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Calderon A.P., Zygmund A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  11. Diening L., Růžička M.: Calderón–Zygmund operators on generalized Lebesgue spaces L p(·) and problems related to fluid dynamics. J. Reine Angew. Math. 563, 197–220 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Diening L., Harjulehto P., Hästö P., Růžička M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  13. Diening L., Harjulehto P., Hästö P., Růžička M., Mizuta Y.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009

    MATH  MathSciNet  Google Scholar 

  14. Dong H., Kim D.: Parabolic and elliptic systems in divergence form with variably partially BMO coefficients. SIAM J. Math. Anal. 43(3), 1075–1098 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Evans L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  16. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems, vol. 105. Princeton University Press, Princeton (1983)

  17. Habermann J.: Calderón–Zygmund estimates for higher order systems with p(x) growth. Math. Z. 258(2), 427–462 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halsey T.C.: Electrorheological fluids. Science 258, 761–766 (1992)

    Article  ADS  Google Scholar 

  19. Han, Q., Lin, F.: Elliptic partial differential equation. Courant Institute of Mathematical Sciences/New York University, New York (1997)

  20. Hajlasz P.: Pointwise Hardy inequalities. Proc. Am. Math. Soc. 127(2), 417–423 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Harjulehto P.: Variable exponent Sobolev spaces with zero boundary values. Math. Bohem. 132(2), 125–136 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Jerison D., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1), 161–219 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kováčik O., Rákosník J.: On spaces L p(x) and W 1,p(x). Czechoslov. Math. J. 41(116), 592–618 (1991)

    Google Scholar 

  24. Li Y., Nirenberg L.: Estimates for elliptic systems from composite material. Comm. Pure Appl. Math. 56, 892–925 (2010)

    Article  MathSciNet  Google Scholar 

  25. Meyers N.: An L p estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa 17(3), 189–206 (1963)

    MATH  MathSciNet  Google Scholar 

  26. Morrey, C.B.: Multiple integrals in the calculus of variations. Grundlehren der Mathematischen Wissenschaften, vol. 130. Springer, New York (1966)

  27. Palagachev D.K., Softova L.G.: Quasilinear divergence form parabolic equations in Reifenberg flat domains. Discret. Contin. Dyn. Syst. 31(4), 1397–1410 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Palagachev D.K., Softova L.G.: The Calderón–Zygmund property for quasilinear divergence form equations over Reifenberg flat domains. Nonlinear Anal. 74(5), 1721–1730 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rajagopal K.R., Růžička M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Reinfenberg, E.: Solutions of the plateau problem for m-dimensional surfaces of varying topological type. Acta Math. 104(1), 1–92 (1960)

    Google Scholar 

  31. Růžička, M.: Electrorheological fluids: modeling and mathematical theory. Springer Lecture Notes in Mathematics, vol. 1748 (2000)

  32. Růžička M.: Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris (I Math.) 329, 393–398 (1999)

    Article  MATH  Google Scholar 

  33. Samko, S.: Denseness of \({C^\infty_0 (\mathbb{R}^N)}\) in the generalized Sobolev spaces \({W^{M,P(X)}(\mathbb{R}^N)}\). In: Direct and Inverse Problems of Mathematical Physics (Newark, DE, 1997). International Society for Analysis, Applications and Computation, vol. 5, pp. 333–342. Kluwer Academic Publication, Dordrecht (2000)

  34. Simader, C.G.: On Dirichlet Boundary Value Problem. An L p Theory Based on a Generalization of Gardings Inequality. Lecture Notes in Math., vol. 268. Springer, Berlin (1972)

  35. Toro, T.: Doubling and flatness: geometry of measures. Not. Amer. Math. Soc. 44(9), 1087–1094 (1997)

  36. Winslow W.M.: Induced fibration of suspensions. J. Appl. Phys. 20(12), 1137–1140 (1949)

    Article  ADS  Google Scholar 

  37. Zhikov V.: Averaging of functionals in the calculus of variations and elasticity. Math. USSR Izv. 29, 3366 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Sig Byun.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, SS., Ok, J. & Wang, L. W 1, p(·)-Regularity for Elliptic Equations with Measurable Coefficients in Nonsmooth Domains. Commun. Math. Phys. 329, 937–958 (2014). https://doi.org/10.1007/s00220-014-1962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1962-8

Keywords

Navigation