Skip to main content
Log in

Tied Pseudo Links & Pseudo Knotoids

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the theory of pseudo knots, which are knots with some missing crossing information, and we introduce and study the theory of pseudo tied links and the theory of pseudo knotoids. In particular, we first present a braiding algorithm for pseudo knots and we then introduce the L-moves in that setting, with the use of which we formulate a sharpened version of the analogue of the Markov theorem for pseudo braids. Then, we introduce and study the theory of tied pseudo links, that generalize the notion of tied links, and we exploit the relation between tied pseudo links and tied singular links. We first present an L-move braid equivalence for tied singular braids. Then, we introduce the tied pseudo braid monoid and we formulate and prove analogues of the Alexander and Markov theorems for tied pseudo links. Finally, we introduce and study the theory of pseudo knotoids, that generalize the notion of knotoids. We present an isotopy theorem for pseudo knotoids and we then pass to the level of braidoids. We further introduce and study the pseudo braidoids by introducing the pseudo L-moves and by presenting the analogues of the Alexander and Markov theorems for pseudo knotoids. We also discuss further research related to tied (multi)-knotoids and tied pseudo (multi)-knotoids. The theory of pseudo knots may serve as a strong tool in the study of DNA, while tied links have potential use in other aspects of molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. Aicardi, F., Juyumaya, J.: Tied Links. J. Knot Theory Ramif. 25(9), 1641001 (2016)

  2. Aicardi, F., Juyumaya, J.: An algebra involving braids and ties, Preprint ICTP, IC/2000/179. Trieste

  3. Aicardi, F., Juyumaya, J.: Tied links and invariants for singular links. Adv. Math. 381, 107629 (2021) https://doi.org/10.1016/j.aim.2021.107629

  4. Aicardi, F., Juyumaya, J.: Kauffman type invariants for tied links. Math. Z. 289, 567–591 (2018)

    Article  MathSciNet  Google Scholar 

  5. Baez, J.C.: Link invariants of finite type and perturbation theory. Lett. Math. Phys. 26(1), 43–51 (1992)

    Article  MathSciNet  Google Scholar 

  6. Birman, J.S.: New points of view in knot theory. Bull. Am. Math. Soc. (New Series) 28, 253–287 (1993)

    Article  MathSciNet  Google Scholar 

  7. Bardakov, V., Jablan, S., Wang, H.: Monoid and group of pseudo braids. J. Knot Theory Ramif. 25(09), 1641002 (2016)

    Article  MathSciNet  Google Scholar 

  8. Diamantis, I.: Tied links in various topological settings. J. Knot Theory Ramif., to appear. arXiv:2010.00374v2 [math.GT]

  9. Diamantis, I.: An alternative basis for the Kauffman bracket skein module of the solid torus via braids. In: Adams C., et al. (eds.) Knots, Low–Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16031-9_16

  10. Diamantis, I.: The Kauffman bracket skein module of the handlebody of genus 2 via braids. J. Knot Theory Ramif. 28(13), 1940020 (2019). https://doi.org/10.1142/S0218216519400200

  11. Diamantis, I.: HOMFLYPT skein sub–modules of the lens spaces L(p,1) via braids. Topol. Appl. 107500 (2020). https://doi.org/10.1016/j.topol.2020.107500

  12. Diamantis, I. Tied links in 3-manifolds, work in progress

  13. Diamantis, I., Lambropoulou, S.: Braid equivalences in 3–manifolds with rational surgery description. Topol. Appl. 194, 269–295 (2015). https://doi.org/10.1016/j.topol.2015.08.009

  14. Diamantis, I., Lambropoulou, S.: A new basis for the HOMFLYPT skein module of the solid torus. J. Pure Appl. Algebra 220(2), 577–605 (2016). https://doi.org/10.1016/j.jpaa.2015.06.014

  15. Diamantis, I., Lambropoulou, S.: The braid approach to the HOMFLYPT skein module of the lens spaces \(L(p, 1)\), Springer Proceedings in Mathematics and Statistics (PROMS). Algebraic Model. Topol. Comput. Struct. Appl. (2017). https://doi.org/10.1007/978-3-319-68103-0_7

    Article  MATH  Google Scholar 

  16. Diamantis, I., Lambropoulou, S.: An important step for the computation of the HOMFLYPT skein module of the lens spaces L(p,1) via braids. J. Knot Theory Ramif. 28(11), 1940007 (2019). https://doi.org/10.1142/S0218216519400078

  17. Dorier, J., Goundaroulis, D., Benedetti, F., Stasiak, A.: Knotoid: a tool to study the entanglement of open protein chains using the concept of knotoids. Bioinformatics 34(19), 3402–3404 (2018)

    Article  Google Scholar 

  18. Diamantis, I., Lambropoulou, S., Przytycki, J.H.: Topological steps on the HOMFLYPT skein module of the lens spaces L(p,1) via braids. J. Knot Theory Ramif. 25(14) (2016). https://doi.org/10.1142/S021821651650084X

  19. Flores, M.: Tied links in the solid torus. J. Knot Theory Ramif. 30(01), 2150006 (2021). https://doi.org/10.1142/S0218216521500061

  20. Fenn, R., Keyman, E., Rourke, C.P.: The singular braid monoid embeds in a group. J. Knot Theory Ramif. 7(07), 881–892 (1998)

    Article  MathSciNet  Google Scholar 

  21. Gemein, B.: Singular braids and Markov’s theorem. J. Knot Theory Ramif. 6(04), 441–454 (1997)

  22. Gúgúmcú, N.: On knotoids, braidoids and their applications. PhD thesis (2017)

  23. Goundaroulis, D., Dorier, J., Benedetti, F., Stasiak, A.: Studies of global and local entanglements of individual protein chains using the concept of knotoids. Sci. Rep. 7(1), 6309 (2017)

  24. Goundaroulis, D., Gügümcü, N., Lambropoulou, S., Dorier, J., Stasiak , A., Kauffman, L.: Topological models for open–knotted protein chains using the concepts of knotoids and bonded knotoids. Polymers 9(9), 444 (2017)

  25. Gügümcü, N., Lambropoulou, S.: Knotoids, braidoids and applications. Symmetry 9(12), 315 (2017)

  26. Gügümcü, N., Lambropoulou, S.: Braidoids. Israel J. Math., to appear. arXiv:1908.06053v2

  27. Hanaki, R.: Pseudo diagrams of links, links and spatial graphs. Osaka J. Math. 47, 863–883 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Henrich, A., Hoberg, R., Jablan, S., Johnson, L., Minten, E., Radovic, L.: The theory of pseudoknots. J. Knot Theory Ramif. 22(07), 1350032 (2013)

    Article  MathSciNet  Google Scholar 

  29. Häring-Oldenburg, R., Lambropoulou, S.: Knot theory in handlebodies. J. Knot Theory Ramif. 6(6), 921–943 (2002)

    Article  MathSciNet  Google Scholar 

  30. Jones, V.F.R.: Hecke algebra representations of braid groups and link polynomials. Ann. Math. 126, 335–388 (1987)

  31. Juyumaya, J.: Another algebra from the Yokonuma–Hecke algebra. Preprint ICTP IC/1999/160. Trieste

  32. Kauffman, L.H., Lambropoulou, S.: Virtual braids and the \(L\)-move. J. Knot Theory Ramif. 15(6), 773–811 (2006)

    Article  MathSciNet  Google Scholar 

  33. Lambropoulou, S.: L -Moves and Markov theorems. J. Knot Theory Ramif. 16(10), 1459–1468 (2007)

  34. Lambropoulou, S.: Knot theory related to generalized and cyclotomic Hecke algebras of type B. J. Knot Theory Ramif. 8(5), 621–658 (1999)

    Article  MathSciNet  Google Scholar 

  35. Lambropoulou, S.: Diagrammatic representations of knots and links as closed braids. In: Adams, C., Henrich, A., Kauffman, L.H., Ludwig, L. (eds.) Concise Encyclopedia of Knot Theory (2019)

  36. Lambropoulou, S., Rourke, C.P.: Markov’s theorem in \(3\)-manifolds. Topol. Appl. 78(1997), 95–122 (2006)

    MathSciNet  MATH  Google Scholar 

  37. Manousos, M., Lambropoulou, S., Kauffman, L. H.: Finite type invariants for knotoids. arXiv:2010.01692 [math.GT]

  38. Paris, L., Rabenda, L.: Singular Hecke algebras, Markov traces, and HOMFLY-type invariants. Annales de l’Institut Fourier 58(7), 2413–2443 (2008). https://doi.org/10.5802/aif.2419

    Article  MathSciNet  MATH  Google Scholar 

  39. Turaev, V.: Knotoids. Osaka J. Math. 49, 195–223 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Diamantis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diamantis, I. Tied Pseudo Links & Pseudo Knotoids. Mediterr. J. Math. 18, 201 (2021). https://doi.org/10.1007/s00009-021-01842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01842-1

Keywords

Mathematics Subject Classification

Navigation