Skip to main content

A Survey on Knotoids, Braidoids and Their Applications

  • Conference paper
  • First Online:
Knots, Low-Dimensional Topology and Applications (KNOTS16 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 284))

Included in the following conference series:

Abstract

This paper is a survey on the theory of knotoids and braidoids. Knotoids are open ended knot diagrams in surfaces and braidoids are geometric objects analogous to classical braids, forming a counterpart theory to the theory of knotoids in the plane. We survey through the fundamental notions and existing works on these objects as well as their applications in the study of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Adams, A. Henrich, K. Kearney, N. Scoville, Knots related by knotoids. To appear in Am. Math. Mon. (2019)

    Google Scholar 

  2. J.W. Alexander, A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. USA 9, 93–95 (1923)

    Article  Google Scholar 

  3. E. Artin, Theorie der Zöpfe. Abh. Math. Semin. Hambg. Univ. 4, 47–72 (1926)

    Article  Google Scholar 

  4. E. Artin, Theory of braids. Ann. Math. 48, 101–126 (1947)

    Article  MathSciNet  Google Scholar 

  5. A. Bartholomew, Andrew Bartholomew’s mathematics page: knotoids, http://www.layer8.co.uk/maths/knotoids/index.htm. Accessed 14 Jan 2015

  6. D. Bennequin, Entrlacements et équations de Pfaffe. Asterisque 107–108, 87–161 (1983)

    MathSciNet  MATH  Google Scholar 

  7. J.S. Birman, Braids, links and mapping class groups. Ann. Math. Stud. 82 (1974) (Princeton University Press, Princeton)

    Google Scholar 

  8. J.S. Birman, W.W. Menasco, On Markov’s theorem. J. Knot Theory Ramif. 11(3), 295–310 (2002)

    Article  MathSciNet  Google Scholar 

  9. H. Brunn, Über verknotete Kurven. Verh. des Int. Math. Congr. 1, 256–259 (1897)

    Google Scholar 

  10. D. Goundaroulis, J. Dorier, F. Benedetti, A. Stasiak, Studies of global and local entanglements of individual protein chains using the concept of knotoids. Sci. Rep. 7, 6309 (2017)

    Article  Google Scholar 

  11. D. Goundaroulis, N. Gügümcü, S. Lambropoulou, J. Dorier, A. Stasiak, L.H. Kauffman, Topological models for open knotted protein chains using the concepts of knotoids and bonded knotoids, in Polymers, Special issue on Knotted and Catenated Polymers, vol. 9(9), ed. by D. Racko, A. Stasiak (2017), p. 444. https://doi.org/10.3390/polym9090444

  12. N. Gügümcü, On knotoids, braidoids and their applications. Ph.D. thesis, National Technical University of Athens (2017)

    Google Scholar 

  13. N. Gügümcü, A combinatorial setting for braidoids. In preparation

    Google Scholar 

  14. N. Gügümcü, L.H. Kauffman, New invariants of knotoids. Eur. J. Comb. 65C, 186–229 (2017)

    Article  MathSciNet  Google Scholar 

  15. N. Gügümcü, L.H. Kauffman, Parity in knotoids. Submitted for publication

    Google Scholar 

  16. N. Gügümcü, S. Lambropoulou, Knotoids, braidoids and applications. Symmetry 9(12), 315 (2017). https://doi.org/10.3390/sym9120315

  17. N. Gügümcü, S. Lambropoulou, Braidoids. Submitted for publication

    Google Scholar 

  18. N. Gügümcü, S. Nelson, Biquandle coloring invariants of knotoids. To appear in J. Knot Theory Ramif. arXiv:1803.11308. https://doi.org/10.1142/S0218216519500299

  19. N. Gügümcü, L.H. Kauffman, D. Goundaroulis, S. Lambropoulou, A Khovanov homology for knotoids. In preparation

    Google Scholar 

  20. L.H. Kauffman, S. Lambropoulou, Virtual braids. Fundam. Math. 184, 159–186 (2004)

    Article  MathSciNet  Google Scholar 

  21. D. Kodokostas, S. Lambropoulou, A spanning set and potential basis of the mixed Hecke algebra on two fixed strands. Mediterr. J. Math. 15:192 (2018). https://doi.org/10.1007/s00009-018-1240-7

  22. D. Kodokostas, S. Lambropoulou, Rail knotoids. Accepted for publication in J. Knot Theory Ramif

    Google Scholar 

  23. P.G. Korablev, Y.K. May, V. Tarkaev, Classification of low complexity knotoids. Sib. Electron. Math. Rep. 15, 1237–1244 (2018) [Russian, English abstract]. https://doi.org/10.17377/semi.2018.15.100

  24. S. Lambropoulou, Short proofs of Alexander’s and Markov’s theorems. Warwick preprint (1990)

    Google Scholar 

  25. S. Lambropoulou, A study of braids in 3-manifolds. Ph.D. thesis, University of Warwick (1993)

    Google Scholar 

  26. S. Lambropoulou, C.P. Rourke, Markov’s theorem in 3-manifolds. Topol. Appl. 78, 95–122 (1997)

    Article  MathSciNet  Google Scholar 

  27. V. Manturov, Parity in knot theory. Mat. Sb. 201(5), 65–110 (2010)

    Article  MathSciNet  Google Scholar 

  28. A.A. Markov, Über die freie Äquivalenz geschlossener Zöpfe. Rec. Math. Mosc. 1(43), 73–78 (1936)

    Google Scholar 

  29. H.R. Morton, Threading knot diagrams. Math. Proc. Camb. Philos. Soc. 99, 247–260 (1986)

    Article  MathSciNet  Google Scholar 

  30. P. Traczyk, A new proof of Markov’s braid theorem, preprint (1992), Banach Cent. Publ. 42, Institute of Mathematics Polish Academy of Sciences, Warszawa (1998)

    Google Scholar 

  31. V. Turaev, Knotoids. Osaka J. Math. 49, 195–223 (2012)

    MathSciNet  MATH  Google Scholar 

  32. P. Vogel, Representation of links by braids: a new algorithm. Comment. Math. Helv. 65, 104–113 (1990)

    Article  MathSciNet  Google Scholar 

  33. N. Weinberg, Sur l’ equivalence libre des tresses fermée. Comptes Rendus (Doklady) de l’ Académie des Sciences de l’ URSS 23(3), 215–216 (1939)

    Google Scholar 

  34. K. Wolcott, The knotting of theta curves and other graphs in \(S^3\). Geom. Topol. (Athens, 1985, Lect. Notes Pure Appl. Math. 105, 325–346 (1987), Dekker, New York)

    Google Scholar 

  35. S. Yamada, The minimal number of Seifert circles equals the braid index of a link. Invent. Math. 89, 347–356 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of Sofia Lambropoulou and Neslihan Gügümcü has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program IJEducation and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation, MIS: 380154. Louis H. Kauffman’ s work was supported by the Laboratory of Topology and Dynamics, Novosi- birsk State University (contract no. 14.Y26.31.0025 with the Ministry of Education and Science of the Russian Federation)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Gügümcü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gügümcü, N., Kauffman, L.H., Lambropoulou, S. (2019). A Survey on Knotoids, Braidoids and Their Applications. In: Adams, C., et al. Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-16031-9_19

Download citation

Publish with us

Policies and ethics