Skip to main content
Log in

Global and Non-global Solutions for a Class of Damped Fourth-Order Schrödinger Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this note, some well-posedness issues for a class of fourth-order Schrödinger equations with a time-dependent damping and a pure power non-linearity are investigated. Indeed, global and non-global existence of solutions is obtained under suitable conditions on the damping and the source term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic, New York (1975)

    MATH  Google Scholar 

  2. Akahori, T., Nawa, H.: Blowup and scattering problems for the nonlinear Schrödinger equations. Kyoto J. Math. 53, 629–672 (2013)

    Article  MathSciNet  Google Scholar 

  3. Boulenger, T., Lenzmann, E.: Blow-up for biharmonic NLS. Ann. Sci. l’ENS. 50(3), 503–544 (2017)

    MATH  Google Scholar 

  4. Carles, R., Antonelli, P., Sparber, C.: On non-linear Schrödinger type equations with non-linear damping. Int. Math. Res. Not. 3, 740–762 (2015)

    MATH  Google Scholar 

  5. Cui, S., Guo, C.: Well-posedness of higher-order nonlinear Schrödinger equations in Sobolev spaces \(H^s({\mathbb{R}}^n)\) and applications. Nonlinear Anal. 67, 687–707 (2007)

    Article  MathSciNet  Google Scholar 

  6. Feng, B., Zhao, D., Sun, C.: On the Cauchy problem for the non-linear Schrödinger equations with time-dependent linear loss/gain. J. Math. Anal. Appl. 416, 901–923 (2014)

    Article  MathSciNet  Google Scholar 

  7. Ghanmi, R.: Asymptotics for a class of coupled fourth-order Schrödinger equations. Mediterr. J. Math. 15, 109 (2018)

    Article  Google Scholar 

  8. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: fourth-order non-linear Schrödinger equation. Phys. Rev. E. 53(2), 1336–1339 (1996)

    Article  Google Scholar 

  9. Karpman, V.I., Shagalov, A.G.: Stability of soliton described by non-linear Schrödinger type equations with higher-order dispersion. Phys D. 144, 194–210 (2000)

    Article  MathSciNet  Google Scholar 

  10. Kenig, C.E., Merle, F.: Global wellposedness, scattering and blow up for the energy critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kim, J., Arnold, A., Yao, X.: Global estimates of fundamental solutions for higher-order Schrödinger equations. Monatsh. Math. 168(2), 253–266 (2012)

    Article  MathSciNet  Google Scholar 

  12. Miao, C., Zheng, J.: Scattering theory for the defocusing fourth-order Schrödinger equation. Nonlinearity 29(2), 692–736 (2016)

    Article  MathSciNet  Google Scholar 

  13. Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the focusing energy-critical non-linear Schrödinger equations of fourth-order in the radial case. J. Differ. Equ. 246, 3715–3749 (2009)

    Article  Google Scholar 

  14. Miao, C., Xu, G., Zhao, L.: Global well-posedness and scattering for the defocusing energy-critical non-linear Schrödinger equations of fourth-order in dimensions \(d \ge 9\). J. Differ. Equ. 251(no. 12, no. 15), 3381–3402 (2011)

    Article  Google Scholar 

  15. Nawa, H.: Asymptotic and limiting profiles of blowup solutions of the non-linear Schrödinger equations with critical power. Commun. Pure Appl. Math. 52, 193–270 (1999)

    Article  MathSciNet  Google Scholar 

  16. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13, 116–162 (1955)

    MathSciNet  MATH  Google Scholar 

  17. Ohta, M., Todorova, G.: Remarks on global existence and blowup for damped non-linear Schrödinger equations. Discret. Contin. Dyn. Syst. 23, 1313–1325 (2009)

    Article  Google Scholar 

  18. Pausader, B.: Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case. Dyn. Part. Differ. Equ. 4(3), 197–225 (2007)

    Article  Google Scholar 

  19. Pausader, B.: The focusing energy-critical fourth-order Schrödinger equation with radial data. Discret. Contin. Dyn. Syst. Ser. A 24(4), 1275–1292 (2009)

    Article  MathSciNet  Google Scholar 

  20. Saanouni, T.: Global well-posedness of a damped Schrödinger equation in two space dimensions. Math. Methods Appl. Sci. 37(4), 488–495 (2014)

    Article  MathSciNet  Google Scholar 

  21. Saanouni, T.: A note on fourth-order non-linear Schrödinger equation. Ann. Funct. Anal. 6(1), 249–266 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saanouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 2.15

Let us give a brief proof of the Strichartz estimate in Proposition 2.15. Take the free high-order Schrödinger-type equation

$$ (i\partial _t+\Delta ^2)u=0,\quad u(0,\cdot )=u_0. $$

Taking the Fourrier part of u, yields

$$ u(t,x)={\mathcal {F}}^{-1}\Big (y\mapsto e^{it|y|^4}\Big )*u_0:= e^{it\Delta ^2}u_0. $$

It’s known [11] that \(|{\mathcal {F}}^{-1}\Big (y\mapsto e^{it|y|^4}\Big )(x)|\lesssim t^{-\frac{N}{4}}(1+t^{-\frac{1}{4}}|x|)^{-\frac{2}{3}},\quad t> 0\). This implies that

$$ \Vert e^{it\Delta ^2}u_0\Vert _{L^\infty }\lesssim t^{-\frac{N}{4}}\Vert u_0\Vert _{1}\quad \text{ and }\quad \Vert e^{it\Delta ^2}u_0\Vert \lesssim \Vert u_0\Vert . $$

By interpolation, yields \(\Vert e^{it\Delta ^2}u_0\Vert _r\lesssim t^{-\frac{N}{4}(1-\frac{2}{r})}\Vert u_0\Vert _{r'}\). This implies that

$$\begin{aligned} \Vert \int _0^te^{i(t-s)\Delta ^2}h(s)\mathrm{{d}}s\Vert _r&\lesssim \int _0^t|t-s|^{-\frac{N}{2}(\frac{1}{2}-\frac{1}{r})}\Vert h(s)\Vert _{r'}\mathrm{{d}}s\\&\lesssim \int _0^t|t-s|^{-\frac{2}{q}}\Vert h(s)\Vert _{r'}\mathrm{{d}}s. \end{aligned}$$

The proof is achieved via Riesz–Potential inequality.

1.2 Proof of Proposition 2.1

Let us use a standard fixed point argument. Denote the admissible pair

$$ q:=\frac{8(p+1)}{N(p-1)},\quad r:=1+p. $$

For \(T,R>0,\) define the space

$$\begin{aligned} E_{T,R}&:=\Big \{{u}\in C_T(H^2)\cap L^q_T(W^{2,r})\,\, \text{ s. } \text{ t } \,\,\Vert {u}\Vert _{L^\infty _T(L^2) L^{q}_T(L^{r})}\\&\quad \cap +\Vert \Delta {u}\Vert _{L^\infty _T(L^2)\cap L^{q}_T(L^{r})}\le R\Big \} \end{aligned}$$

endowed with the complete distance

$$ \mathrm{{d}}({u},{v}):=\Vert u-v\Vert _{L_T^\infty (L^2)}+\Vert u-v\Vert _{L^{q}_T(L^{r})}. $$

Define the function

$$ \phi ({u}(t)) :={\tilde{u}}(t):= e^{it\Delta ^2}u_0 - i\int _0^th(s)e^{i(t-s)\Delta ^2}[|u|^{p-1}u]\,\mathrm{{d}}s. $$

Let us prove the existence of some small \(0<T, R<1\) such that \(\phi \) is a contraction of \(E_{T,R}\). Take \({u_1}, {u_2}\in E_{T,R},\) applying the Strichartz estimate, one gets

$$\begin{aligned} \mathrm{{d}}({\tilde{u}}_1,{\tilde{u}}_2)\le & {} C_{q}\Vert h\Vert _{L^\infty ([0,1])}\Vert |u_1|^{p-1}u_1-|u_2|^{p-1}u_2\Vert _{L^{q'}((0,T),L^{r'})}\\\le & {} C_{q,h}\sum _{i=1}^2\Vert (u_1-u_2)u_i^{p-1}\Vert _{L^{q'}((0,T),L^{r'})}\\\le & {} C_{q,h}\sum _{i=1}^2\Vert u_i\Vert _{L^\infty ((0,T),L^r)}^{p-1}\Vert u_1-u_2\Vert _{L^{q'}((0,T),L^r)}\\\le & {} C_{q,h}\sum _{i=1}^2\Vert u_i\Vert _{L^{\infty }((0,T),H^2)}^{p-1}T^{1-\frac{2}{q}}\mathrm{{d}}(u_1,u_2)\\\le & {} C_{q,h}R^{p-1}T^{1-\frac{2}{q}}\mathrm{{d}}(u_1,u_2). \end{aligned}$$

Moreover, taking \(u_2=0\) in the previous inequality, yields

$$ \Vert \tilde{u}\Vert _{L_T^q(L^r)}\le C_{q,h}\Big (\Vert u_0\Vert + T^{1-\frac{2}{q}}R^p\Big ). $$

With Hölder inequality

$$\begin{aligned} \Vert \Delta (f(u))\Vert _{L_T^{q'}(L^{r'})}\lesssim & {} \Vert |u|^{p-1}\Delta {u}\Vert _{L_T^{q'}(L^{r'})}+\Vert |\nabla {u}|^2|u|^{p-2}\Vert _{L_T^{q'}(L^{r'})}\\\lesssim & {} \Vert u\Vert _{L_T^\infty (L^r)}^{p-1}\Vert \Delta {u}\Vert _{L_T^{q'}(L^{r})}+\Vert |\nabla {u}|^2|u|^{p-2}\Vert _{L_T^{q'}(L^{r'})}. \end{aligned}$$

Using the interpolation inequality \(\Vert \nabla \cdot \Vert _{r}^2\lesssim \Vert \cdot \Vert _{r}\Vert \Delta \cdot \Vert _{r}\), one gets

$$\begin{aligned} \Vert |\nabla {u}|^2|u|^{p-2}\Vert _{L^{r'}_x}\lesssim & {} \Vert \nabla {u}\Vert _{L^{r}_x}^2\Vert u\Vert _{L^{r}_x}^{p-2} \lesssim \Vert \Delta {u}\Vert _{L^{r}_x}\Vert {u}\Vert _{L^r_x}^{p-1}. \end{aligned}$$

This implies that

$$\begin{aligned} \Vert \Delta (f(u))\Vert _{L_T^{q'}(L^{r'})}\lesssim & {} \Vert u\Vert _{L_T^\infty (L^r)}^{p-1}\Vert \Delta {u}\Vert _{L_T^{q}(L^{r})}T^{1-\frac{2}{q}}. \end{aligned}$$

Then, thanks to Strichartz estimates, one has

$$ \Vert {\tilde{u}}\Vert _{L_T^q(W^{2,r})\cap L_T^\infty (H^2)}\le C_{q,h}\Big (\Vert e^{i.\Delta ^2}u_0\Vert _{L_T^q(W^{2,r})}+ T^{1-\frac{2}{q}}R^{p}\Big ). $$

Since \(\Vert e^{i.\Delta ^2}u_0\Vert _{L_T^q(W^{2,r})}\rightarrow 0\) when \(T\rightarrow 0\), Choosing \(T>0\) sufficiently small and \(R>2C_{q,h}\Vert e^{i.\Delta ^2}u_0\Vert _{L_T^q(W^{2,r})}\) via the fact that \({2\le }p\le p^*\), \(\phi \) is a contraction of \( E_{T, R}\). Local existence is proved via a classical Picard argument. Moreover,

$$ C\Vert u(t)\Vert _{H^2}+C'(T^*-t)^{1-\frac{2}{q}}R^p>R,\quad \forall R>0. $$

Thus, for \(R=2C\Vert u(t)\Vert _{H^2}\),

$$ \Vert u(t)\Vert _{H^2}^{p-1}(T^*-t)^{1-\frac{2}{q}}\gtrsim 1. $$

Thus,

$$ \limsup _{T^*}\Vert u(t)\Vert _{\dot{H}^2}=\infty . $$

Now, in the critical case, arguing as previously with a Picard fixed point in a centered ball of \(L_T^{a}(W^{2,\rho })\), with computation of the end of the previous section, one obtains a local solution. Moreover, arguing as in the sub-critical case, it follows that

$$ \limsup _{T^*}\Vert u(t)\Vert _{L^{a}((0,t),\dot{W}^{2,\rho })}=\infty . $$

1.3 Proof of Proposition 2.3

Define the differential operator

$$ {a}_{\varphi _R} := -i (\nabla {\varphi _R}\cdot \nabla + \nabla \cdot \nabla {\varphi _R} ) $$

which acts on functions according to

$$ {a}_{\varphi _R} f:= -i \big (\nabla {\varphi _R}\cdot \nabla f + \nabla \cdot (f\nabla {\varphi _R}) \big ). $$

Define also

$$ M_R[v(t)]:=2\mathfrak {I}(\int _{{\mathbb {R}}^N}{{\bar{v}}}\nabla \varphi _R\nabla v\,\mathrm{{d}}x)=\langle u(t), {a}_{\varphi _R}v(t) \rangle . $$

By taking the time derivative and using \(i\dot{v}\) in (1.2), one gets

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t}M_R[v(t)]= & {} \langle v,[\Delta ^2, i{a}_{\varphi _R}]v(t) \rangle + \langle v,[\lambda e^{-(p-1)\int _0^ta(s)\mathrm{{d}}s}|v|^{p-1}, i{a}_{\varphi _R}]v(t) \rangle \nonumber \\= & {} {\mathcal {A}} [v(t)] + {\mathcal {B}} [v(t)], \end{aligned}$$
(7.1)

where \([X, Y]= XY- YX\) denotes the commutator of X and Y.

Using computations done in [3], one concludes that

$$\begin{aligned} {\mathcal {A}}[v(t)]\le 8\int _{R^N}|\Delta v|^2 + {\mathcal {O}}\Big (R^{-4} + R^{-2}\Vert \nabla v\Vert ^2 \Big ). \end{aligned}$$
(7.2)

Now, for the last terms in (2.3), an integration by parts yields

$$\begin{aligned} {\mathcal {B}}[v(t)]= & {} - \langle v, [\lambda e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s}|v|^{p-1}, \nabla \varphi _R\cdot \nabla + \nabla \cdot \nabla \varphi _R]v\rangle \\= & {} -\lambda e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s} \langle v, [|v|^{p-1}, \nabla \varphi _R\cdot \nabla + \nabla \cdot \nabla \varphi _R]v\rangle \\= & {} 2\lambda e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s}\int _{{\mathbb {R}}^N}|v|^2\nabla (|v|^{p-1})\nabla \varphi _R\,\mathrm{{d}}x\\= & {} -\frac{2(p-1)}{p+1}\lambda e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s}\int _{{\mathbb {R}}^N}|v|^{p+1}\Delta (\varphi _R)\,\mathrm{{d}}x. \end{aligned}$$

Since \(\varphi _R(r) = \frac{r^2}{2}\) for \(r\le R\) and hence \(\Delta \varphi _R(r) -N=0\) for \(r\le R,\) one obtains

$$\begin{aligned} {\mathcal {B}}[v(t)]= & {} -\lambda e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s}\\&\left( \frac{2N(p-1)}{1+p}\int _{{\mathbb {R}}^N}|v|^{1+p}\,\mathrm{{d}}x - \frac{2(p-1)}{1+p}\int _{|x|\ge R}(\Delta \varphi _R -N)|v|^{1+p}\,\mathrm{{d}}x\right) . \end{aligned}$$

Applying Strauss inequality,

$$\begin{aligned} \int _{|x|\ge R}|v|^{1+p}\,\mathrm{{d}}x\lesssim & {} \Vert v\Vert ^2\Vert v\Vert _{L^\infty (|x|\ge R)}^{p-1}\\\lesssim & {} R^{-(N-1)\frac{p-1}{2}}\Vert v\Vert ^{2+\frac{p-1}{2}}\Vert \nabla v\Vert ^{\frac{p-1}{2}}. \end{aligned}$$

Taking account of \(\Vert \nabla {\varphi _R}- N\Vert _{L^\infty }\lesssim 1\), one obtains

$$\begin{aligned} {\mathcal {B}}[v(t)]&=-\lambda e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s}\Bigg (\frac{2N(p-1)}{1+p}\int _{{\mathbb {R}}^N}|v|^{p-1}\,\mathrm{{d}}x\\&\quad + {\mathcal {O}} ( R^{-(N-1)\frac{p-1}{2}}\Vert \nabla v\Vert ^{\frac{p-1}{2}}) \Bigg ). \end{aligned}$$

Finally, thanks to (7.2) and the previous equality, one gets

$$\begin{aligned} \frac{\mathrm{{d}}}{\mathrm{{d}}t}M_R[v(t)]\le & {} 8{}\Vert \Delta v(t)\Vert ^2-\frac{2N\lambda (p-1)}{1+p} e^{-(p-1)\int _0^ta(s)\,\mathrm{{d}}s}\int _{{\mathbb {R}}^N}|v|^{p-1}\,\mathrm{{d}}x\\&+ {\mathcal {O}} \Big (R^{-4} + R^{-2}{}\Vert \nabla v\Vert ^2 + R^{-(N-1)\frac{p-1}{2}}\Vert \nabla v(t)\Vert ^{\frac{p-1}{2}} \Big ) \\\le & {} 2N(p-1)E(v(t)) - (N(p-1)-8){}\Vert \Delta v(t)\Vert ^2 \\&+ {\mathcal {O}} \Big (R^{-4} + R^{-2}{}\Vert \nabla v\Vert ^2 + R^{-(N-1)\frac{p-1}{2}}\Vert \nabla v(t)\Vert ^{\frac{p-1}{2}} \Big ). \end{aligned}$$

This completes the proof of Proposition 2.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T. Global and Non-global Solutions for a Class of Damped Fourth-Order Schrödinger Equations. Mediterr. J. Math. 18, 21 (2021). https://doi.org/10.1007/s00009-020-01692-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01692-3

Keywords

Mathematics Subject Classification

Navigation