Skip to main content
Log in

On the Tykhonov Well-Posedness of an Antiplane Shear Problem

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider a boundary value problem which describes the frictional antiplane shear of an elastic body. The process is static and friction is modeled with a slip-dependent version of Coulomb’s law of dry friction. The weak formulation of the problem is in the form of a quasivariational inequality for the displacement field, denoted by \({{{\mathcal {P}}}}\). We associated with problem \({{{\mathcal {P}}}}\) a boundary optimal control problem, denoted by \({{{\mathcal {Q}}}}\). For Problem \({{{\mathcal {P}}}},\) we introduce the concept of well-posedness and for Problem \({{{\mathcal {Q}}}}\) we introduce the concept of weakly and weakly generalized well-posedness, both associated with appropriate Tykhonov triples. Our main results are Theorems 5 and 16. Theorem 5 provides the well-posedness of Problem \({{{\mathcal {P}}}}\) and, as a consequence, the continuous dependence of the solution with respect to the data. Theorem 16 provides the weakly generalized well-posedness of Problem \({{{\mathcal {Q}}}}\) and, under additional hypothesis, its weakly well posedness. The proofs of these theorems are based on arguments of compactness, lower semicontinuity, monotonicity and various estimates. Moreover, we provide the mechanical interpretation of our well-posedness results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V.: Optimal Control of Variational Inequalities, Research Notes in Mathematics, vol. 100. Pitman, Boston (1984)

    Google Scholar 

  2. Bonnans, J.F., Tiba, D.: Pontryagin’s principle in the control of semilinear elliptic variational inequalities. Appl. Math. Optim. 23, 299–312 (1991)

    Article  MathSciNet  Google Scholar 

  3. Boukrouche, M., Tarzia, D.A.: Existence, uniqueness and convergence of optimal control problems associated with parabolic variational inequalitiesd of the second kind. Nonlinear Anal. Real World Appl. 12, 2211–2224 (2011)

    Article  MathSciNet  Google Scholar 

  4. Boukrouche, M., Tarzia, D.A.: Convergence of distributed optimal control problems governed by elliptic variational inequalities. Comput. Optim. Appl. 53, 375–393 (2012)

    Article  MathSciNet  Google Scholar 

  5. Boukrouche, M., Tarzia, D.A.: Convergence of optimal control problems governed by second kind parabolic variational inequalities. J. Control Theory Appl. 11, 422–427 (2013)

    Article  MathSciNet  Google Scholar 

  6. Capatina, A.: Variational Inequalities Frictional Contact Problems, Advances in Mechanics and Mathematics, vol. 31. Springer, New York (2014)

    MATH  Google Scholar 

  7. Čoban, M.M., Kenderov, P.S., Revalski, J.P.: Generic well-posedness of optimization problems in topological spaces. Mathematika 36, 301–324 (1989)

    Article  MathSciNet  Google Scholar 

  8. Dontchev, A.L., Zolezzi, T.: Well-posed Optimization Problems. Lecture Notes in Mathematics, vol. 1543. Springer, Berlin (1993)

    Book  Google Scholar 

  9. Freidman, A.: Optimal control for variational inequalities. SIAM J. Control Optim. 24, 439–451 (1986)

    Article  MathSciNet  Google Scholar 

  10. Goeleven, D., Mentagui, D.: Well-posed hemivariational inequalities. Numer. Funct. Anal. Optim. 16, 909–921 (1995)

    Article  MathSciNet  Google Scholar 

  11. Horgan, C.O.: Anti-plane shear deformation in linear and nonlinear solid mechanics. SIAM Rev. 37, 53–81 (1995)

    Article  MathSciNet  Google Scholar 

  12. Horgan, C.O., Miller, K.L.: Anti-plane shear deformation for homogeneous and inhomogeneous anisotropic linearly elastic solids. J. Appl. Mech. 61, 23–29 (1994)

    Article  MathSciNet  Google Scholar 

  13. Horgan, C.O., Saccomandi, G.: Superposition of generalized plane strain on anti-plane shear deformation in isotropic incompressible hyperelastic materials. J. Elast. 73, 221–235 (2003)

    Article  MathSciNet  Google Scholar 

  14. Huang, X.X.: Extended and strongly extended well-posedness of set-valued optimization problems. Math. Methods Oper. Res. 53, 101–116 (2001)

    Article  MathSciNet  Google Scholar 

  15. Huang, X.X., Yang, X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    Article  MathSciNet  Google Scholar 

  16. Lucchetti, R., Patrone, F.: A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities. Numer. Funct. Anal. Optim. 3, 461–476 (1981)

    Article  MathSciNet  Google Scholar 

  17. Lucchetti, R., Patrone, F.: Some properties of “wellposedness” variational inequalities governed by linear operators. Numer. Funct. Anal. Optim. 5, 349–361 (1983)

    Article  Google Scholar 

  18. Lucchetti, R.: Convexity and Well-posed Problems, CMS Books in Mathematics. Springer, New York (2006)

    Book  Google Scholar 

  19. Matei, A., Micu, S.: Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. Theory Methods Appl. 74, 1641–1652 (2011)

    Article  MathSciNet  Google Scholar 

  20. Matei, A., Micu, S., Niţă, C.: Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of Hencky type. Math. Mech. Solids 23, 308–328 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mignot, F.: Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  Google Scholar 

  22. Mignot, F., Puel, J.-P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22, 466–476 (1984)

    Article  MathSciNet  Google Scholar 

  23. Neitaanmaki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics. Springer, New York (2006)

    Google Scholar 

  24. Sofonea, M., Matei, A.: Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, vol. 18. Springer, New York (2009)

    MATH  Google Scholar 

  25. Sofonea, M., Xiao, Y.B.: Tykhonov well-posedness of elliptic variational-hemivariational inequalities. Electron. J. Differ. Equ., Paper No. 64 (2019)

  26. Sofonea, M., Xiao, Y.B.: On the well-posedness concept in the sense of Tykhonov. J. Optim. Theory Appl. 183, 139–157 (2019)

    Article  MathSciNet  Google Scholar 

  27. Tykhonov, A.N.: On the stability of functional optimization problems. USSR Comput. Math. Math. Phys. 6, 631–634 (1966)

    Google Scholar 

  28. Xiao, Y.B., Huang, N.J., Wong, M.M.: Well-posedness of hemivariational inequalities and inclusion problems. Taiwan. J. Math. 15, 1261–1276 (2011)

    Article  MathSciNet  Google Scholar 

  29. Zolezzi, T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 823731 CONMECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Sofonea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sofonea, M., Tarzia, D.A. On the Tykhonov Well-Posedness of an Antiplane Shear Problem. Mediterr. J. Math. 17, 150 (2020). https://doi.org/10.1007/s00009-020-01577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01577-5

Keywords

Mathematics Subject Classification

Navigation