Skip to main content
Log in

On the Continuity of Pseudo-Differential Operators on Multiplier Spaces Associated to Herz-type Triebel–Lizorkin Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, for a certain range of parameters, we prove that there exist symbols in the Hörmander class \(S_{1,0}^{0}\) which do not define bounded operators on \(M\big ({\dot{K}}_{q}^{\alpha ,p}{F_{\beta }^{s}}\big )\). To do these, we need the characterization of Herz–Besov spaces by ball means of differences and some properties of pointwise multipliers for Herz–Triebel–Lizorkin spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourdaud, G.: Sur les opérateurs pseudo-diffé rentiels à coefficients peu réguliers. PhD thesis (1983)

  2. Bourdaud, G., Moussai, M.: Continuité des op érateurs pseudo-différentiels sur les espaces de Besov localis és. Bull. Sci. Math 112, 419–432 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Ching, C.H.: Pseudodifferential operators with non regular symbols. J. Differ. Equ. 11, 436–447 (1972)

    Article  Google Scholar 

  4. Coifman, R.R., Meyer, Y.: Au delà des opé rateurs pseudo-différentiels. Astérisque Soc. math. France 57 (1978)

  5. Djeriou, A., Moussai, M.: A Counterexample for boundedness of some pseudo-differential operators on pointwise multipliers Triebel–Lizorkin space. Math. Balkanica 23(1–2), 145–161 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256(6), 1731–1768 (2009)

    Article  MathSciNet  Google Scholar 

  7. Drihem, D.: La multipliication dans les espaces de Besov, Lizorkin-Triebel et Lorentz, le cas critique \(s<\frac{n}{p}\). Magister thesis, M’sila University (2001)

  8. Drihem, D., Moussai, M.: On the pointwise multiplication in Besov and Triebel–Lizorkin spaces. Int. J. Math. Math. Sci. 76182, 1–18 (2006). https://doi.org/10.1155/IJMMS/2006/76182

    Article  MATH  Google Scholar 

  9. Drihem, D.: Embeddings properties on Herz-type Besov and Triebel–Lizorkin spaces. Math. Ineq. Appl. 16(2), 439–460 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Drihem, D.: Jawerth-Franke embeddings of Herz-type Besov and Triebel-Lizorkin spaces. Functiones et Approximatio (Accepted)

  11. Drihem, D.: Sobolev embeddings for Herz-type Triebel–Lizorkin spaces, Function Spaces and Inequalities. In: Jain, P., Schmeisser, H.-J. (eds.) Springer Proceedings in Mathematics and Statistics. Springer, Berlin (2017)

    Google Scholar 

  12. Drihem, D.: Complex interpolation of Herz-type Triebel–Lizorkin spaces. Math. Nachr 291(13), 2008–2023 (2018)

    Article  MathSciNet  Google Scholar 

  13. Feichtinger, H.G.: On a class of convolution algebras of functions. Ann. Inst. Fourier (Grenoble) 27, 135–162 (1977)

    Article  MathSciNet  Google Scholar 

  14. Feichtinger, H.G.: Banach convolution algebras of functions II. Monatsh. Math. 87, 181–207 (1979)

    Article  MathSciNet  Google Scholar 

  15. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods. I. Math. Nachr 123, 97–120 (1985)

    Article  MathSciNet  Google Scholar 

  16. Feichtinger, H.G., Weisz, F.: Herz spaces and summability of Fourier transforms. Math. Nachr 281(3), 309–324 (2008)

    Article  MathSciNet  Google Scholar 

  17. Feichtinger, H.G.: Choosing Function Spaces in Harmonic Analysis, volume 4 of The February Fourier Talks at the Norbert Wiener Center, Appl. Numer. Harmon. Anal., pages 65–101. Birkhauser/Springer, Cham (2015)

  18. Franke, J.: On the spaces \(F_{p, q}^{s}\) of Triebel–Lizorkin type: pointwise multipliers and spaces on domains. Math. Nachr. 125, 29–68 (1986)

    Article  MathSciNet  Google Scholar 

  19. Hernández, E., Weiss, G., Yang, D.: The \( \varphi \)-transform and wavelet characterizations of Herz-type spaces. Collect. Math. 3, 285–320 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Hernández, E., Yang, D.: Interpolation of Herz-type Hardy spaces and applications. Math. Nachr. 42, 564–581 (1998)

    MATH  Google Scholar 

  21. Hörmander, L.: Pseudo-differential operators of type 1,1. Commun. PDE 13, 1085–1111 (1988)

    Article  MathSciNet  Google Scholar 

  22. Lu, S., Yang, D.: The decomposition of the weighted Herz spaces on \({\mathbb{R}}^{n}\) and its applications. Sci. China (Ser. A) 38, 147–158 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Lu, S., Yang, D.: The local versions of \(H^{p}(\mathbb{R} ^{n})\) spaces at the origin. Stud. Math. 116(2), 103–131 (1995)

    Article  Google Scholar 

  24. Lu, S., Yang, D.: Herz-type Sobolev and Bessel potential spaces and their applications. Sci. China (Ser. A) 40, 113–129 (1997)

    Article  MathSciNet  Google Scholar 

  25. Li, X., Yang, D.: Boundedness of some sublinear operators on Herz spaces. Illinois J. Math 40, 484–501 (1996)

    Article  MathSciNet  Google Scholar 

  26. Nikol’skii, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin (1975)

    Book  Google Scholar 

  27. Runst, T.: Pseudo-differential operators of the ‘exotic’ class \(L_{1,1}^{0}\) in spaces of Besov and Triebel-Lizorkin type. Ann. Glob. Anal. Geom. 3(1), 13–28 (1985)

    Article  Google Scholar 

  28. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter, Berlin (1996)

    Book  Google Scholar 

  29. Sickel, W.: On pointwise multipliers for \(F_{p, q}^{s}( \mathbb{R}^{n})\) in case \(\sigma _{p, q}<s<n/p\). Ann. Mat. Pura. Appl. 176(1), 209–250 (1999)

    Article  MathSciNet  Google Scholar 

  30. Stein, E.M.: Harmonic Analysis Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Press, Princeton (1993)

    MATH  Google Scholar 

  31. Triebel, H.: Spaces of distributions of Besov type on Euclideann-space. Duality, interpolation. Ark. Mat. 11, 13–64 (1973)

    Article  MathSciNet  Google Scholar 

  32. Triebel, H.: Theory of Function Spaces. Birkhä user, Basel (1983)

    Book  Google Scholar 

  33. Triebel, H.: Theory of Function Spaces II. Birkhä user, Basel (1992)

    Book  Google Scholar 

  34. Triebel, H.: Theory of Function Spaces III. Birkhä user, Basel (2006)

    MATH  Google Scholar 

  35. Tang, L., Yang, D.: Boundedness of vector-valued operators on weighted Herz spaces. Approx. Th. Appl. 16, 58–70 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Wong, M.W.: Introduction to Pseudo-Differential Operators. World Scientific, Singapore (1991)

    Book  Google Scholar 

  37. Xu, J.: Some properties on Herz-type Besov spaces. Hunan Daxue Xuebao 30, 75–78 (2003)

    MathSciNet  MATH  Google Scholar 

  38. Xu, J.: Pointwise multipliers of Herz-type Besov spaces and their applications. Appl. Math. 17(1), 115–121 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Xu, J., Yang, D.: Herz-type Triebel–Lizorkin spaces I. Acta Math. Sci (English Ed.) 21(3), 643–654 (2005)

    Article  MathSciNet  Google Scholar 

  40. Xu, J.: Equivalent norms of Herz-type Besov and Triebel–Lizorkin spaces. J. Funct. Sp. Appl. 3, 17–31 (2005)

    Article  MathSciNet  Google Scholar 

  41. Xu, J.: Decompositions of non-homogeneous Herz-type Besov and Triebel–Lizorkin spaces. Sci. China. Math. 57(2), 315–331 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for careful reading and many helpful comments, which improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douadi Drihem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we present the proof of Theorem 2.9 and Proposition 4.4.

Proof of Theorem 2.9

We split it into three steps.

Step 1. Let \(f\in {\dot{K}}_{q}^{\alpha ,p}B_{\beta }^{s}\). Since \(s>0\), we see that

$$\begin{aligned} \big \Vert f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \leqslant \sum _{j=0}^{\infty }\big \Vert \Lambda _{j}f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \leqslant c\big \Vert f|{\dot{K}}_{q}^{\alpha ,p}B_{\beta }^{s}\big \Vert . \end{aligned}$$

Step 2. We put

$$\begin{aligned} H=\Bigg (\int _{0}^{1}t^{-s\beta }\big \Vert d_{t}^{M}f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\frac{\mathrm{d}t}{t}\Bigg )^{\frac{1}{\beta }} \end{aligned}$$

After a change of variable \(t=2^{-y}\), we get

$$\begin{aligned} H=(\log 2)^{\frac{1}{\beta }}\Bigg (\int \limits _{1}^{+\infty }2^{ys\beta }\big \Vert d_{2^{-y}}^{M}f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\mathrm{d}y\Bigg )^{\frac{1}{ \beta }}. \end{aligned}$$

Then

$$\begin{aligned} H\leqslant c\Bigg (\sum \limits _{k=0}^{\infty }2^{ks\beta }\big \Vert d_{2^{-k}}^{M}f| {\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\Bigg )^{\frac{1}{\beta }}. \end{aligned}$$

Let \(\left\{ \varphi _{j}\right\} _{j}\) be a smooth dyadic resolution of unity. Obviously we need to estimate

$$\begin{aligned} \Bigg \{2^{ks}\sum \limits _{j=0}^{k}\big \Vert d_{2^{-k}}^{M}(\Lambda _{j}f)|{\dot{K}} _{q}^{\alpha ,p}\big \Vert \Bigg \}_{k} \end{aligned}$$
(5.1)

and

$$\begin{aligned} \Bigg \{2^{ks}\sum \limits _{j=k+1}^{\infty }\big \Vert d_{2^{-k}}^{M}(\Lambda _{j}f)| {\dot{K}}_{q}^{\alpha ,p}\big \Vert \Bigg \}_{k}, \end{aligned}$$
(5.2)

in \(\ell ^{\beta }\)-norm. Using the same arguments of [32, 2.5.10] we get

$$\begin{aligned} \left| \Delta _{h}^{M}\Lambda _{j}f\left( x\right) \right| \leqslant c 2^{\left( j-k\right) M}\Lambda _{j}^{*,a}f\left( x\right) , \end{aligned}$$

if \(0\leqslant j\leqslant k\), \(x\in \mathbb {R}^{n}\) and \(\left| h\right| \leqslant 2^{-k}\), with \(c>0\) independent of jkh and x, which yields that

$$\begin{aligned} d_{2^{-k}}^{M}(\Lambda _{j}f)(x)\leqslant c2^{\left( j-k\right) M}\Lambda _{j}^{*,a}f\left( x\right) , \end{aligned}$$

if \(0\leqslant j\leqslant k,k\in \mathbb {N}_{0}\) and \(x\in \mathbb {R}^{n}\). Since \(s<M\) , (5.1) in \(\ell ^{\beta }\)-norm does not exceed

$$\begin{aligned} \Bigg (\sum \limits _{j=0}^{\infty }2^{js\beta }\big \Vert \Lambda _{j}^{*,a}f| {\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\Bigg )^{\frac{1}{\beta }}\lesssim \big \Vert f|{\dot{K}}_{q}^{\alpha ,p}B_{\beta }^{s}\big \Vert , \end{aligned}$$

by Theorem 2.5. Let \(j>k\). Recalling the definition of \( d_{2^{-k}}^{M}(\Lambda _{j}f)\) and observe that

$$\begin{aligned} \int _{B}\left| \Lambda _{j}f(x+(M-i)2^{-k}h)\right| dh\leqslant c{\mathcal {M}}(\Lambda _{j}f)(x), \end{aligned}$$

if \(j,k\in \mathbb {N}_{0},i\in \{0,\ldots ,M\},\left| h\right| \leqslant 2^{-k}\) and \(x\in \mathbb {R}^{n}\). Therefore,

$$\begin{aligned} d_{2^{-k}}^{M}(\Lambda _{j}f)(x)\leqslant c{\mathcal {M}}(\Lambda _{j}f)(x) \end{aligned}$$

for any \(j>k\) and \(x\in \mathbb {R}^{n}\). Hence

$$\begin{aligned} 2^{ks}\sum \limits _{j=k+1}^{\infty }\big \Vert d_{2^{-k}}^{M}(\Lambda _{j}f)|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \leqslant c2^{ks}\sum \limits _{j=k+1}^{\infty }\big \Vert {\mathcal {M}}(\Lambda _{j}f)|{\dot{K}}_{q}^{\alpha ,p}\big \Vert . \end{aligned}$$

Using Lemma 3.2, we obtain that (5.2) in \(\ell ^{\beta } \)-norm can be estimated from above by

$$\begin{aligned} \Bigg (\sum \limits _{j=0}^{\infty }2^{js\beta }\big \Vert {\mathcal {M}}(\Lambda _{j}f)| {\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\Bigg )^{\frac{1}{\beta }}\lesssim \big \Vert f|{\dot{K}}_{q}^{\alpha ,p}B_{\beta }^{s}\big \Vert , \end{aligned}$$

where we used Lemma 3.4.

Step 3. Let \(\Psi \) be a function in \({\mathcal {S}}(\mathbb {R}^{n})\) satisfying \(\Psi (x)=1\) for \(|x|\leqslant 1\) and \(\Psi (x)=0\) for \( |x|\geqslant \frac{3}{2}\), in addition radialsymmetric. We make use of an observation made by Nikol’skij [26] (see also [29]). We put

$$\begin{aligned} \psi \left( x\right) :=\left( -1\right) ^{M+1}\sum \limits _{i=0}^{M-1}\left( -1\right) ^{i}\left( \begin{array}{c} M \\ i \end{array} \right) \Psi \left( x\left( M-i\right) \right) . \end{aligned}$$

The function \(\psi \) satisfies \(\psi \left( x\right) =1\) for \(\left| x\right| \leqslant 1/M\) and \(\psi \left( x\right) =0\) for \(\left| x\right| \geqslant 3/2\). Then, taking \(\varphi _{0}\left( x\right) =\psi \left( x\right) ,\varphi _{1}\left( x\right) =\psi \left( x/2\right) -\psi \left( x\right) \) and \(\varphi _{j}\left( x\right) =\varphi _{1}\left( 2^{-j+1}x\right) \) for \(j=2,3,\ldots \), we obtain that \(\left\{ \varphi _{j}\right\} \) is a smooth dyadic resolution of unity. This yields that

$$\begin{aligned} \Bigg (\sum _{j=0}^{\infty }2^{js\beta }\big \Vert {\mathcal {F}}^{-1}\varphi _{j}*f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\Bigg )^{1/\beta } \end{aligned}$$

is an norm equivalent in \({\dot{K}}_{q}^{\alpha ,p}{B_{\beta }^{s}}\). Let us prove that the last expression is bounded by

$$\begin{aligned} C\big \Vert f|{\dot{K}}_{q}^{\alpha ,p}{B_{\beta }^{s}}\big \Vert _{M}. \end{aligned}$$
(5.3)

Obviously from (2.2)

$$\begin{aligned} \big \Vert {\mathcal {F}}^{-1}\varphi _{0}*f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \lesssim \big \Vert f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \lesssim \big \Vert f| {\dot{K}}_{q}^{\alpha ,p}{B_{\beta }^{s}}\big \Vert _{M}. \end{aligned}$$
(5.4)

Moreover, it holds for \(x\in \mathbb {R}^{n}\) and \(j=1,2,\ldots \)

$$\begin{aligned} {\mathcal {F}}^{-1}\varphi _{j}*f\left( x\right) :=\left( -1\right) ^{M+1}\int _{\mathbb {R}^{n}}\Delta _{2^{-j}y}^{M}f\left( x\right) {\widetilde{\Psi }}\left( y\right) \mathrm {d}y, \end{aligned}$$

with \({\widetilde{\Psi }}\left( \cdot \right) ={\mathcal {F}}^{-1}\Psi \left( \cdot \right) -2^{-n}{\mathcal {F}}^{-1}\Psi \left( \cdot /2\right) \). Now, for \(j\in \mathbb {N}\) we write

$$\begin{aligned} \int _{\mathbb {R}^{n}}|\Delta _{2^{-j}y}^{M}f\left( x\right) ||{\widetilde{\Psi }}\left( y\right) |\mathrm {d}y= & {} \int _{\left| y\right| \leqslant 1}|\Delta _{2^{-j}y}^{M}f\left( x\right) ||{\widetilde{\Psi }}\left( y\right) | \mathrm {d}y\\&+\int _{\left| y\right| >1}|\Delta _{2^{-j}y}^{M}f\left( x\right) ||{\widetilde{\Psi }}\left( y\right) |\mathrm {d}y. \end{aligned}$$

Obviously we need only to estimate the second term. We have

$$\begin{aligned} \int _{\left| y\right| >1}|\Delta _{2^{-j}y}^{M}f\left( x\right) || {\widetilde{\Psi }}\left( y\right) |\mathrm {d}y\leqslant & {} \sum \limits _{k=0}^{\infty }\int _{{\overline{C}}_{k}}|\Delta _{2^{-j}y}^{M}f\left( x\right) ||{\widetilde{\Psi }}\left( y\right) |\mathrm {d} y \nonumber \\\leqslant & {} c\sum \limits _{k=0}^{\infty }2^{nj-Nk}\int _{{\overline{C}}_{k-j}}|\Delta _{h}^{M}f\left( x\right) |\mathrm {d}h, \end{aligned}$$
(5.5)

where \({\overline{C}}_{i}=\{x\in \mathbb {R}^{n}:2^{i}<\left| x\right| \leqslant 2^{i+1}\}\), \(i\in \mathbb {N}_{0}\) and \(N>0\) is at our disposal, and we have used the properties of the function \({\widetilde{\Psi }}\),

$$\begin{aligned} |{\widetilde{\Psi }}\left( y\right) |\leqslant c(1+\left| y\right| )^{-N} \end{aligned}$$

for any \(y\in \mathbb {R}^{n}\) and any \(N>n\). Now the right-hand side of (5.5) in \(\ell _{\beta }^{s}({\dot{K}}_{q}^{\alpha ,p})\)-norm is bounded by

$$\begin{aligned} c\sum \limits _{k=0}^{\infty }2^{-Nk}\Bigg (\sum \limits _{j=0}^{\infty }2^{(s+n)j\beta }(\omega _{j,k})^{\beta }\Bigg )^{1/\beta }, \end{aligned}$$
(5.6)

where

$$\begin{aligned} \omega _{j,k}=\Big \Vert \int _{{\overline{C}}_{k-j}}|\Delta _{h}^{M}f(\cdot )| \mathrm {d}h\Big |{\dot{K}}_{q}^{\alpha ,p}\Big \Vert ,\quad j,k\in \mathbb {N}_{0}. \end{aligned}$$

The sum (5.6) can be rewritten as

$$\begin{aligned}&c\sum \limits _{k=0}^{\infty }2^{-Nk}\Bigg (\sum \limits _{j=0}^{k+1}\cdot \cdot \cdot +\sum \limits _{j=k+2}^{\infty }\cdot \cdot \cdot \Bigg )^{1/\beta } \\&\quad \leqslant c\sum \limits _{k=0}^{\infty }2^{-Nk}\Bigg (\Bigg (\sum \limits _{j=0}^{k+1} \cdot \cdot \cdot \Bigg )^{1/\beta }+\Bigg (\sum \limits _{j=k+2}^{\infty }\cdot \cdot \cdot \Bigg )^{1/\beta }\Bigg ) \\&\quad =c\sum \limits _{k=0}^{\infty }2^{-Nk}(S_{k}^{_{1}}+S_{k}^{_{2}}). \end{aligned}$$

Clearly

$$\begin{aligned} (S_{k}^{_{1}})^{\beta }\leqslant c 2^{kn\beta }\big \Vert {\mathcal {M}}(f)| {\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\sum \limits _{j=0}^{k+1}2^{sj\beta }\leqslant c 2^{(s+n)k\beta }\big \Vert f|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }, \end{aligned}$$

where \(c>0\) is independent of k. Now let us estimate \(S_{k}^{_{2}}\). We obtain

$$\begin{aligned} (S_{k}^{_{2}})^{\beta }\lesssim & {} 2^{\left( n+s\right) k\beta }\sum \limits _{v=1}^{\infty }2^{(s+n)v\beta }\Big \Vert \int _{\left| h\right| \leqslant 2^{-v}}|\Delta _{h}^{M}f|dh\Big |{\dot{K}}_{q}^{\alpha ,p} \Big \Vert ^{\beta } \\\lesssim & {} 2^{\left( n+s\right) k\beta }\sum \limits _{v=1}^{\infty }2^{sv\beta }\big \Vert d_{2^{-v}}^{M}(f)|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta } \\\lesssim & {} 2^{\left( n+s\right) k\beta }\int \limits _{0}^{1}t^{-s\beta } \big \Vert d_{t}^{M}(f)|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{\beta }\frac{dt}{t}. \end{aligned}$$

Taking N large enough such that \(N>s+n\), we estimate the right-hand side of (5.5) in \(\ell _{\beta }^{s}({\dot{K}}_{q}^{\alpha ,p})\) -norm by

$$\begin{aligned} c\big \Vert f|{\dot{K}}_{q}^{\alpha ,p}B_{\beta }^{s}\big \Vert _{M}. \end{aligned}$$

This finishes the proof. \(\square \)

Proof of Proposition 4.4

The proof is based on [1]. Observe that \(g_{\tau ,\alpha }\in {\dot{K}}_{q}^{\alpha ,p}\), because of \(\tau +\frac{n}{q}>0\). We need to prove that

$$\begin{aligned} \sup _{0<t\leqslant 1}t^{-(\tau +\frac{n}{q})}\sup _{\left| h\right|<t} \big \Vert \Delta _{h}^{m}g|{\dot{K}}_{q}^{\alpha ,p}\big \Vert<\infty ,\quad 0<\tau +\frac{n}{q}<m,\quad m\in \mathbb {N}, \end{aligned}$$

since

$$\begin{aligned} \big \Vert d_{t}^{m}(g)|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \leqslant \sup _{\left| h\right|<t}\big \Vert \Delta _{h}^{m}g|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ,\quad 0<t\leqslant 1 \end{aligned}$$

We will present the proof into several steps.

Step 1. \(\alpha =0\). Since \(\tau >-\frac{n}{q}\), for any \( 1<p\leqslant q\) we have \(\tau >-\frac{n}{p}\). From Theorem 2.6 we obtain

$$\begin{aligned} g\in B{_{p,\infty }^{\tau +\frac{n}{p}}}\hookrightarrow {\dot{K}} _{q}^{0,p}B_{\infty }^{\tau +\frac{n}{q}}, \end{aligned}$$

if \(p\leqslant q\). Now if \(p>q\) we have

$$\begin{aligned} g\in B{_{q,\infty }^{\tau +\frac{n}{q}}=}{\dot{K}}_{q}^{0,q}B_{\infty }^{\tau + \frac{n}{q}}\hookrightarrow {\dot{K}}_{q}^{0,p}B_{\infty }^{\tau +\frac{n}{q}}. \end{aligned}$$

Step 2. \(-\frac{n}{q}<\alpha <0\). Can be covered by the similar arguments used in Step 1.

Step 3. \(0<\alpha <\tau +\frac{n}{q}\).

Substep 3.1. We prove that \(g\in {\dot{K}}_{q}^{\alpha ,p}B{ _{\infty }^{\tau +\frac{n}{q}}}\) if \(0<\tau +\frac{n}{q}\leqslant 1\).

Substep 3.1.1. We consider the case of \(0<\tau +\frac{n}{q }<1\). Clearly,

$$\begin{aligned} \big \Vert \triangle _{h}^{1}g|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{p}= & {} \sum \limits _{k=-\infty }^{\infty }2^{k\alpha p}\big \Vert \triangle _{h}^{1}g\,\chi _{k}\big \Vert _{q}^{p} \\= & {} \sum \limits _{k\in \mathbb {Z},2^{k}<2\left| h\right| }\cdot \cdot \cdot +\sum \limits _{k\in \mathbb {Z},2^{k}\geqslant 2\left| h\right| }\cdot \cdot \cdot \\= & {} H_{1}+H_{2}. \end{aligned}$$

We estimate each term on the right separately. First notice that

$$\begin{aligned} \big \Vert \triangle _{h}^{1}g\,\chi _{k}\big \Vert _{q}^{q}= & {} \int _{\{x:\left| x\right| \leqslant 2\left| h\right| \}\cap C_{k}}\left| \triangle _{h}^{1}g\left( x\right) \right| ^{q}\,\mathrm {d}x\,+\int _{\{x:\left| x\right| >2\left| h\right| \}\cap C_{k}}\left| \triangle _{h}^{1}g\left( x\right) \right| ^{q}\,\mathrm {d}x \\= & {} T_{1,k}(h)+T_{2,k}(h),\quad h\in \mathbb {R}^{n},k\in \mathbb {Z}.\\ \end{aligned}$$

\(\bullet \) Estimation of \(H_{1}\). Obviously \(T_{2,k}(h)=0\) if \( 2^{k}<2\left| h\right| ,h\in \mathbb {R}^{n}\ \)and \(k\in \mathbb {Z}\). Therefore, we need only to estimate \(T_{1,k}(h)\). Observe that

$$\begin{aligned} \triangle _{h}^{1}g\left( x\right) =g\left( x+h\right) -g\left( x\right) \end{aligned}$$

and

$$\begin{aligned} |x+h|\leqslant |x|+|h|<3\left| h\right| ,\quad \text {if}\quad 2^{k}<2\left| h\right| \quad \text {and}\quad x\in C_{k}, \end{aligned}$$

which yields

$$\begin{aligned} T_{1,k}(h)\leqslant & {} 2^{q-1}\int _{\{x:|x+h|\leqslant 3\left| h\right| \}\cap C_{k}}\left| g\left( x+h\right) \right| ^{q}\,\mathrm {d} x\\&+2^{q}\int _{\{x:\left| x\right| \leqslant 2\left| h\right| \}\cap C_{k}}\left| g\left( x\right) \right| ^{q}\,\mathrm {d}x \\\leqslant & {} 2^{q}\int _{\left| x\right| \leqslant 3\left| h\right| }\left| g\left( x\right) \right| ^{q}\,\mathrm {d}x \\\leqslant & {} c\int _{0}^{3\left| h\right| }r^{\left( \tau -\alpha \right) q+n-1} \mathrm {d}r \\\leqslant & {} c\left| h\right| ^{(\tau +\frac{n}{q}-\alpha )q}, \end{aligned}$$

since \(\alpha <\tau +\frac{n}{q}\) where \(c>0\) is independent of k and h. Therefore

$$\begin{aligned} H_{1}\leqslant c\left| h\right| ^{(\tau +\frac{n}{q})p}\sum \limits _{k\in \mathbb {Z},2^{k}<2\left| h\right| }\Big (\frac{2^{k}}{|h|}\Big ) ^{\alpha p}\leqslant c\left| h\right| ^{(\tau +\frac{n}{q})p}, \end{aligned}$$

because of \(\alpha >0\).

\(\bullet \) Estimation of \(H_{2}\). As before one finds that

$$\begin{aligned}&T_{1,k}(h)\leqslant \int _{\{x:|x+h|\leqslant 3\left| h\right| \}}\left| \triangle _{h}^{1}g\left( x\right) \right| ^{q}\,\mathrm {d}x\\&\quad \leqslant c\int _{\left| x\right| \leqslant 3\left| h\right| }\left| g\left( x\right) \right| ^{q}\,\mathrm {d}x\leqslant c\left| h\right| ^{(\tau +\frac{n}{q}-\alpha )q}, \end{aligned}$$

since again \(\alpha <\tau +\frac{n}{q}\) where \(c>0\) is independent of k and h. By the mean value theorem;

$$\begin{aligned} \left| \triangle _{h}^{1}g\left( x\right) \right| \leqslant c|h||x|^{\tau -\alpha -1},\quad \left| x\right| >2\left| h\right| , \end{aligned}$$

we obtain

$$\begin{aligned} T_{2,k}(h)\leqslant & {} \left| h\right| ^{q}\int _{C_{k}}\left| x\right| ^{\left( \tau -\alpha -1\right) q}\,\mathrm {d}x \\\leqslant & {} c\left| h\right| ^{q}2^{k(q\left( \tau -\alpha -1\right) +n)}\\= & {} c\left| h\right| ^{q}2^{kq(\tau +\frac{n}{q}-\alpha )}2^{-kq}. \end{aligned}$$

This yields that

$$\begin{aligned} H_{2}\leqslant & {} c\left| h\right| ^{p}\sum \limits _{k\in \mathbb {Z} ,2^{k}\geqslant 2\left| h\right| }2^{kp(\tau +\frac{n}{q}-1)} \\= & {} c\left| h\right| ^{(\tau +\frac{n}{q})p}\sum \limits _{k\in \mathbb { Z},2^{k}\geqslant 2\left| h\right| }\Big (\frac{2^{k}}{\left| h\right| }\Big )^{p(\tau +\frac{n}{q}-1)} \\\leqslant & {} c\left| h\right| ^{(\tau +\frac{n}{q})p}, \end{aligned}$$

since \(\tau +\frac{n}{q}<1\). Therefore,

$$\begin{aligned} \big \Vert \triangle _{h}^{1}g|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \leqslant c\left| h\right| ^{\tau +\frac{n}{q}},\quad \text { if }\quad 0<\alpha<\tau +\frac{ n}{q}<1. \end{aligned}$$

Substep 3.1.2. We consider the case of \(\tau +\frac{n}{q}=1\). We have,

$$\begin{aligned} \big \Vert \triangle _{h}^{2}g|{\dot{K}}_{q}^{\alpha ,p}\big \Vert ^{p}= & {} \sum \limits _{k=-\infty }^{\infty }2^{k\alpha p}\big \Vert \triangle _{h}^{2}g\,\chi _{k}\big \Vert _{q}^{p} \\= & {} \sum \limits _{k\in \mathbb {Z},2^{k}<2\left| h\right| }\cdot \cdot \cdot +\sum \limits _{k\in \mathbb {Z},2^{k}\geqslant 2\left| h\right| }\cdot \cdot \cdot \\= & {} I_{1}+I_{2}. \end{aligned}$$

Observe that

$$\begin{aligned} \big \Vert \triangle _{h}^{2}g\,\chi _{k}\big \Vert _{q}^{q}= & {} \int _{\{x:\left| x\right| \leqslant 2\left| h\right| \}\cap C_{k}}\left| \triangle _{h}^{2}g\left( x\right) \right| ^{q}\,\mathrm {d}x\,+\int _{\{x:\left| x\right| >2\left| h\right| \}\cap C_{k}}\left| \triangle _{h}^{2}g\left( x\right) \right| ^{q}\,\mathrm {d}x \\= & {} V_{1,k}(h)+V_{2,k}(h),\quad h\in \mathbb {R}^{n},k\in \mathbb {Z}. \end{aligned}$$

\(\bullet \) Estimation of \(I_{1}\). Obviously \(V_{2,k}(h)=0\) if \( 2^{k}<2\left| h\right| ,h\in \mathbb {R}^{n},k\in \mathbb {Z}\). Therefore, we need only to estimate \(V_{1,k}(h)\). We have

$$\begin{aligned} \triangle _{h}^{2}g\left( x\right) =g\left( x+h\right) +g\left( x-h\right) -2g\left( x\right) \end{aligned}$$

and

$$\begin{aligned} |x-h|\leqslant |x|+|h|<3\left| h\right| ,\quad \text {if}\quad 2^{k}<2\left| h\right| \quad \text {and}\quad x\in C_{k}, \end{aligned}$$

which yields

$$\begin{aligned} V_{1,k}(h)\leqslant & {} 3^{q}\int _{\left| x\right| \leqslant 3\left| h\right| }\left| g\left( x\right) \right| ^{q}\,\mathrm {d}x \\= & {} c\int _{0}^{3\left| h\right| }r^{\left( \tau -\alpha \right) q+n-1} \mathrm {d}r \\= & {} c\left| h\right| ^{(1-\alpha )q}, \end{aligned}$$

since \(\alpha <\tau +\frac{n}{q}=1\) where \(c>0\) is independent of k and h . Therefore

$$\begin{aligned} I_{1}\leqslant c\left| h\right| ^{p}\sum \limits _{k\in \mathbb {Z} ,2^{k}<2\left| h\right| }\Big (\frac{2^{k}}{\left| h\right| } \Big )^{\alpha p}\leqslant c|h|^{p}, \end{aligned}$$

because of \(\alpha >0\).

\(\bullet \) Estimation of \(I_{2}\). As before one finds

$$\begin{aligned} V_{1,k}(h)\leqslant c\int _{\left| x\right| \leqslant 3\left| h\right| }\left| g\left( x\right) \right| ^{q}\,\mathrm {d}x\leqslant c\left| h\right| ^{(1-\alpha )q}, \end{aligned}$$

where \(c>0\) is independent of k and h. Again by the mean value theorem;

$$\begin{aligned} \left| \triangle _{h}^{2}g\left( x\right) \right| \leqslant c|h|^{2}|x|^{\tau -\alpha -2},\quad \left| x\right| >2\left| h\right| \end{aligned}$$

we obtain

$$\begin{aligned} V_{2,k}(h)\leqslant & {} \left| h\right| ^{2q}\int _{C_{k}}\left| x\right| ^{\left( \tau -\alpha -2\right) q}\,\mathrm {d}x \\\leqslant & {} c\left| h\right| ^{2q}2^{k(q\left( \tau -\alpha -2\right) +n)} \\= & {} c\left| h\right| ^{2q}2^{kq(\tau +\frac{n}{q}-\alpha )}2^{-2kq}. \end{aligned}$$

This yields that

$$\begin{aligned} I_{2}\leqslant & {} c\left| h\right| ^{2p}\sum \limits _{k\in \mathbb {Z} ,2^{k}\geqslant 2\left| h\right| }2^{-kp} \\= & {} c\left| h\right| ^{p}\sum \limits _{k\in \mathbb {Z},2^{k}\geqslant 2\left| h\right| }2^{-kp}\left| h\right| ^{p} \\\leqslant & {} c\left| h\right| ^{p}. \end{aligned}$$

Therefore,

$$\begin{aligned} \big \Vert \triangle _{h}^{2}g|{\dot{K}}_{q}^{\alpha ,p}\big \Vert \leqslant c\left| h\right| ,\quad \text {if}\quad 0<\alpha <\tau +\frac{n}{q}=1. \end{aligned}$$

Step 4. \(\tau +\frac{n}{q}>1\). Using the same arguments of [39, Theorem 4.5]

$$\begin{aligned} \big \Vert g|{\dot{K}}_{q}^{\alpha ,p}{B_{\infty }^{\tau +\frac{n}{q}}}\big \Vert =\sum _{|\lambda |\leqslant m}\big \Vert g^{(\lambda )}|{\dot{K}}_{q}^{\alpha ,p}{ B_{\infty }^{\tau +\frac{n}{q}-m}}\big \Vert , \end{aligned}$$

is an equivalent quasi-norms on \({\dot{K}}_{q}^{\alpha ,p}{B_{\infty }^{\tau + \frac{n}{q}}}\). Let us prove by induction that \(g^{(\lambda )}\in {\dot{K}} _{q}^{\alpha ,p}{B_{\infty }^{\tau +\frac{n}{q}-m}}\) for any \(|\lambda |\leqslant m\) with \(m=-[-\tau -\frac{n}{q}]-1\). The case \(m=0\) is covered by the above steps. Observe that

$$\begin{aligned} 1\leqslant m<\tau +\frac{n}{q}<m+1. \end{aligned}$$

and \(g^{(\lambda )}\) is a linear combination of

$$\begin{aligned} g_{j}=\left| x\right| ^{\tau -\alpha -j}\Theta \left( x\right) \omega \left( x\right) ,\quad j=0,\ldots ,|\lambda |, \end{aligned}$$

where \(\Theta \in C^{\infty }\left( \mathbb {R}^{n}\backslash \{0\}\right) \) is homogeneous of degree 0 and \(\omega \in {\mathcal {D}}(\mathbb {R}^{n})\). Since \(j<\tau +\frac{n}{q}\), it follows that \(g_{j}\in {\dot{K}}_{q}^{\alpha ,p}\). If \(j\ne 0\), then by induction

$$\begin{aligned} g_{j}\in {\dot{K}}_{q}^{\alpha ,p}{B_{\infty }^{\tau +\frac{n}{q}-j}} \hookrightarrow {\dot{K}}_{q}^{\alpha ,p}{B_{\infty }^{\tau +\frac{n}{q}-m}.} \end{aligned}$$

Now if \(j=0\), then by the fact that \(\tau +\frac{n}{q}>m\geqslant 1\),

$$\begin{aligned} \big \Vert g_{0}\big \Vert _{{\dot{W}}_{q,1}^{\alpha ,p}}=\sum \limits _{|\beta |\leqslant 1} \big \Vert \frac{\partial ^{\beta }g_{0}}{\partial ^{\beta }x}\big \Vert _{{\dot{K}} _{q}^{\alpha ,p}}<\infty . \end{aligned}$$

Since \({\dot{W}}_{q,1}^{\alpha ,p}={\dot{K}}_{q}^{\alpha ,p}F_{2}^{1}\), see [24], we obtain

$$\begin{aligned} g_{0}\in {\dot{K}}_{q}^{\alpha ,p}{F}_{2}^{{1}}\hookrightarrow {\dot{K}} _{q}^{\alpha ,p}{F}_{\infty }^{\tau +\frac{n}{q}}\hookrightarrow {\dot{K}} _{q}^{\alpha ,p}{B_{\infty }^{\tau +\frac{n}{q}-m}.} \end{aligned}$$

The proof of Proposition 4.4 is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djeriou, A., Drihem, D. On the Continuity of Pseudo-Differential Operators on Multiplier Spaces Associated to Herz-type Triebel–Lizorkin Spaces. Mediterr. J. Math. 16, 153 (2019). https://doi.org/10.1007/s00009-019-1418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1418-7

Keywords

Mathematics Subject Classification

Navigation