Skip to main content
Log in

Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the second-order elliptic operator

$$\begin{aligned} L =\Delta +(a-1)\sum _{i,j=1}^N\frac{x_ix_j}{|x|^2}D_{ij}+c\frac{x}{|x|^2}\cdot \nabla -\frac{b}{|x|^{2}}, \end{aligned}$$

\(a>0\), \(b,\ c \in \mathbb {R}\) and we prove gradient estimates for the heat kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55. National Bureau of Standards Applied Mathematics Series, Washington D.C. (1964)

    MATH  Google Scholar 

  2. Banuelos, R., Smits, R.G.: Brownian motion in cones. Probab. Theory Relat. Fields 108(3), 299–319 (1997)

    Article  MathSciNet  Google Scholar 

  3. Baricz, Á.: On a product of modified Bessel functions. Proc. Am. Math. Soc. 137(01), 189–193 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bogus, K., Malecki, J.: Heat kernel estimates for the Bessel differential operator in half-line. Math. Nachr. 289, 17–18 (2016). https://doi.org/10.1002/mana.201500163

    Article  MathSciNet  MATH  Google Scholar 

  5. Garrett, P.: Harmonic analysis on spheres. http://www-users.math.umn.edu/~garrett/m/mfms/notes/11_spheres.pdf

  6. Garrett, P.: Harmonic analysis on spheres II. http://www-users.math.umn.edu/~garrett/m/mfms/notes_c/spheres_II.pdf

  7. Levin, B.Y.: Lectures on Entire Functions, Translations of Mathematical Monographs, vol. 150 (1996) (ISSN 0065-9282)

  8. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Modern Birkháuser Classics, Boston (2012)

    MATH  Google Scholar 

  9. Metafune, G., Negro, L., Spina, C.: Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients. J. Evol. Equ. (2017). https://doi.org/10.1007/s00028-017-0408-0

    Article  MATH  Google Scholar 

  10. Metafune, G., Sobajima, M., Spina, C.: Elliptic and parabolic problems for a class of operators with second order discontinuous coefficients. Ann. Scuola Norm. Super. Pisa (2019). https://doi.org/10.2422/2036-2145.201605-002

    Article  MATH  Google Scholar 

  11. Metafune, G., Sobajima, M., Spina, C.: Kernel estimates for elliptic operators with second order discontinuous coefficients. J. Evol. Equ. 17, 485–522 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ouhabaz, E.M.: Analysis of Heat Equations on Domains. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Metafune.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Radial and Angular Derivatives

In this section, we study further properties about the spherical harmonics and the Laplace–Beltrami operator \(\Delta _0\) on the sphere. For \(x\in \mathbb {R}^N\), we use spherical coordinates to write \(x=r\omega \), where \(r:=|x|\)\(\omega :=\frac{x}{|x|}\in S^{N-1}\). For every \(u\in C^2(\mathbb {R}^n)\), we denote by \(D_r u\), \(D_{rr} u\) the radial derivatives of u and by \(\nabla _{\tau }u\) the tangential component of its gradient. They are defined through the formulas

$$\begin{aligned} D_r u&=\sum _{i=1}^{N} D_iu\,\frac{x_i}{r},\qquad D_{rr} u=\sum _{i,j=1}^N D_{ij}u\,\frac{x_i x_j}{r^2},\qquad \nabla u=D_ru \frac{x}{|x|}+\frac{\nabla _\tau u}{r}.\nonumber \\ \end{aligned}$$
(27)

We recall that in spherical coordinates, we have the following relation between the Laplace operator and \(\Delta _0\):

$$\begin{aligned} \Delta =D_{rr}+\frac{N-1}{r}D_r+\frac{\Delta _0}{r^2}. \end{aligned}$$

The operator \(A:=rD_r\) is the Euler operator \(\sum _{i=1}^nx_iD_i\) and, for a given function u, the Euler’s theorem implies that u is \(\alpha \)-homogeneous if and only if \(Au=\alpha u\).

For \(i,j=1,\dots ,N\) we introduce, moreover, the angular operators \(S_{ij}\) defined as

$$\begin{aligned} S_{ij}:=x_iD_j-x_jD_i. \end{aligned}$$

They are first-order differential operators and have a central role in the analysis on the sphere since they allow to decompose the Laplace–Beltrami operator into a sum of second-order angular derivatives. Obviously, \(S_{ii}=0\) and \(S_{ij}=-S_{ji}\) so it is sufficient to consider \(S_{ij}\) for \(i<j\).

We collect in the next proposition some basic properties about the angular derivatives \(S_{ij}\).

Proposition 4.1

Denote by \(\left[ A,B\right] =AB-BA\) the commutator of AB and by \(\delta _i^j\) the Kronecker delta. The following properties hold.

  1. (i)

    For every \(i<j\) and \(h<k\) we have

    $$\begin{aligned} \left[ S_{ij},S_{hk}\right] =-\delta _i^hS_{jk}+\delta _i^kS_{jh}+\delta _j^hS_{ik}-\delta _j^kS_{ih}. \end{aligned}$$

    In particular, \(S_{ij}\) and \( S_{hk}\) commute if and only if \((i,j)=(h,k)\) or \(\left\{ i,j\right\} \cap \left\{ h,k\right\} =\emptyset \).

  2. (ii)

    For every radial function \(u=u(r)\), with \(u\in C^2(\mathbb {R}^N)\) and for every \(v\in C^2(\mathbb {R}^N)\) , we have \(S_{ij}u=0\) and \(S_{ij}(uv)=u S_{ij}v\).

  3. (iii)

    For every radial differential operator \(E=\sum _{k=0}^n a_k(r)\frac{d^k}{dr^k}\), we have \(S_{ij}E=ES_{ij}\).

  4. (iv)

    \(\Delta \,S_{ij}=S_{ij}\,\Delta \) and \(\Delta _0\,S_{ij}=S_{ij}\,\Delta _0\).

Proof

(i) easily follows by a straightforward computation.

Let \(u,v\in C^2(\mathbb {R}^N)\) with \(u=u(r)\); we have \(S_{ij}u=x_iu'(r)\frac{x_j}{r}-x_ju'(r)\frac{x_i}{r}=0\). Moreover, \(S_{ij}(uv)=uS_{ij}v+(S_{ij}u)v=uS_{ij}v\) that proves (ii).

To prove (iii), we observe that for \(E=a(r)D_r\) we have, using (ii),

$$\begin{aligned} S_{ij}(a(r)D_r)= & {} S_{ij}\left( \frac{a(r)}{r}\sum _{k=1}^Nx_kD_k\right) =\frac{a(r)}{r}\left( x_iD_j-x_jD_i\right) \sum _{k=1}^Nx_kD_k\\= & {} \frac{a(r)}{r}\left[ x_iD_j+x_i\sum _{k=1}^Nx_kD_{jk}-x_jD_i-x_j\sum _{k=1}^Nx_kD_{ik}\right] \\= & {} \frac{a(r)}{r}\left[ S_{ij}+\sum _{k=1}^Nx_k(x_iD_{jk}-x_jD_{ik})\right] . \end{aligned}$$

On the other hand,

$$\begin{aligned} (a(r)D_r)S_{ij}= & {} \left( \frac{a(r)}{r}\sum _{k=1}^Nx_kD_k\right) S_{ij}=\frac{a(r)}{r}\sum _{k=1}^Nx_kD_k\left( x_iD_j-x_jD_i\right) \\= & {} \frac{a(r)}{r}\left[ x_iD_j+\sum _{k=1}^Nx_kx_iD_{jk}-x_jD_i-\sum _{k=1}^Nx_kx_jD_{ik}\right] \\= & {} \frac{a(r)}{r}\left[ S_{ij}+\sum _{k=1}^Nx_k(x_iD_{jk}-x_jD_{ik})\right] . \end{aligned}$$

Comparing the last expressions, we have \(S_{ij}E=ES_{ij}\); the general case follows easily by induction.

Finally, to prove (iv), let us suppose, without losing generality, \(i=1,\,j=2\). We have

$$\begin{aligned} \Delta S_{12}= & {} \sum _{i=1}^ND_{ii}\left( x_1D_2-x_2D_1\right) \\= & {} \sum _{i=1}^N\left( x_1D_2D_{ii}+2D_ix_1D_iD_2-x_2D_1D_{ii}-2D_ix_2D_iD_1\right) \\= & {} \sum _{i=1}^N\left( x_1D_2-x_2D_1\right) D_{ii}+2D_1D_2-2D_2D_1= S_{12}\Delta \end{aligned}$$

and so, \(S_{12}\) commutes with \(\Delta \).

Using property (ii), we have also

$$\begin{aligned} S_{12}(r^2\Delta )=r^2S_{12}\Delta =(r^2\Delta )S_{12}. \end{aligned}$$

Since \(r^2\Delta =r^2D_{rr}+(N-1)rD_r+\Delta _0\), it follows immediately from property (iii) and the fact that \(S_{12}\) commutes with \(r^2\Delta \), that \(\Delta _0\,S_{ij}=S_{ij}\,\Delta _0\).

\(\square \)

Before stating the main results, it is worth noting that every function \(f\in C^2(S^{N-1})\) is extendible on a neighbourhood of \(S^{N-1}\) preserving the same degree of regularity; therefore, in what follows, we can always suppose f defined on an open set of \(\mathbb {R}^N\) containing \(S^{N-1}\). In particular, \(\nabla f\), \(\Delta f\) and \(S_{ij}f\) are well defined. For instance, if we define \(\tilde{f}\) on \(\mathbb {R}^N{\setminus }\{0\}\) by \(\tilde{f}(y):=f(\frac{y}{|y|})\), being \(\tilde{f}\) constant along every radial direction, it follows immediately by the decomposition of \(\nabla \) and \(\Delta \) that

$$\begin{aligned} \nabla _\tau f(x)=\nabla \tilde{f}(x),\quad \Delta _0 f(x)=\Delta \tilde{f}(x),\quad \text {for every}\; x\in S^{N-1}. \end{aligned}$$

Let now \(\omega \in S^{N-1}\) and \(v\in T_\omega (S^{N-1})\); the tangential derivative of f in \(\omega \) in the direction v is given by

$$\begin{aligned} (\nabla f(\omega ),v)=(\nabla _\tau f(\omega ),v). \end{aligned}$$

Setting \(\omega =(\omega _1,\ldots ,\omega _N)\in S^{N-1}\), let us define for \(i<j\)

$$\begin{aligned} \omega _{ij}:=(0,\ldots ,-\omega _j,0,\ldots ,\omega _i,0,\ldots )\in T_\omega (S^{N-1}), \end{aligned}$$

i.e. the vector which has \(-\omega _j\) and \(\omega _i\) as, respectively, the ith and the jth components and zeros in the other entries. \(\left( \omega _{ij}\right) _{1\le i<j\le N}\) is, by construction, a system of generators of \(T_\omega (S^{N-1})\).

The next propositions clarify the role and the interaction among the operators introduced so far. We begin by a geometric Lemma.

Lemma 4.2

Let \(\omega \in S^{N-1}\) and \(x,y\in \omega ^\perp \). Then

$$\begin{aligned} (x,y)=\sum _{i<j}(x,\omega _{ij})(y,\omega _{ij}),\qquad |x|^2=\sum _{i<j}|(x,\omega _{ij})|^2. \end{aligned}$$
(28)

Proof

Since \((\omega _{ij},x)=\omega _ix_j-\omega _jx_i,\; (\omega _{ij},y)=\omega _iy_j-\omega _jy_i\), we have

$$\begin{aligned} \sum _{i<j}(x,\omega _{ij})(y,\omega _{ij})= & {} \sum _{i<j}\left( \omega _ix_j-\omega _jx_i\right) \left( \omega _iy_j-\omega _jy_i\right) \\= & {} \sum _{i<j}\left( \omega _i^2x_jy_j+\omega _j^2x_iy_i-\omega _j\omega _ix_iy_j-\omega _i\omega _jx_jy_i\right) \\= & {} \sum _{i\ne j}\omega _i^2x_jy_j-\sum _{i\ne j}\omega _j\omega _ix_iy_j. \end{aligned}$$

Adding and subtracting, in the last formula, the term \(\sum _{i=1}^N\omega _i^2x_iy_i\), we obtain

$$\begin{aligned} \sum _{i<j}(x,\omega _{ij})(y,\omega _{ij})= & {} \sum _{i, j=1}^N\omega _i^2x_jy_j-\sum _{i, j=1}^N\omega _j\omega _ix_iy_j =(x,y)|\omega |^2-(\omega ,x)(\omega ,y)\\= & {} (x,y). \end{aligned}$$

Choosing \(x=y\), we get \(\sum _{i<j}|(x,\omega _{ij})|^2=|x|^2\). \(\square \)

Proposition 4.3

Let fg be \(C^1\) functions defined on a neighbourhood of \(S^{N-1}\). The following properties hold.

  1. (i)

    \(S_{ij}f(\omega )\) is the tangential derivative of f in \(\omega \) in the direction \(\omega _{ij}\), i.e.

    $$\begin{aligned} S_{ij}f(\omega )= (\nabla f(\omega ),\omega _{ij})=(\nabla _\tau f(\omega ),\omega _{ij}). \end{aligned}$$
  2. (ii)

    The jth component of \(\nabla _{\tau } f\) satisfies

    $$\begin{aligned} (\nabla _{\tau } f(\omega ))_j=\sum _{i\ne j}\omega _i \,S_{ij}f(\omega ),\quad \omega \in S^{N-1}. \end{aligned}$$
  3. (iii)

    For every \(\omega \in S^{N-1}\)

    $$\begin{aligned} (\nabla _{\tau } f(\omega ),\nabla _{\tau } g(\omega ))=\sum _{i<j}S_{ij}f(\omega )S_{ij}g(\omega ),\quad |\nabla _{\tau } f(\omega )|^2=\sum _{i<j}|S_{ij}f(\omega )|^2. \end{aligned}$$

Proof

The first assertion is an immediate consequence of the definition of \(S_{ij}\). For the second sentence, we observe that for \(\omega \in S^{N-1}\) it follows from (27) that

$$\begin{aligned} (\nabla _{\tau } f(\omega ))_j= & {} D_jf(\omega )-\omega _jD_rf(\omega )=D_jf(\omega )\sum _{i=1}^N\omega _i^2-\omega _j\sum _i\omega _iD_if(\omega )\\= & {} \sum _{i=1}^N\omega _i \left[ \omega _i D_jf(\omega )-\omega _j D_if(\omega )\right] =\sum _{i\ne j}\omega _i \,S_{ij}f(\omega ). \end{aligned}$$

(iii) is an immediate consequence of (i) and (28). \(\square \)

We can now show the announced decomposition of the Laplace–Beltrami operator as a sum of second-order angular derivatives.

Proposition 4.4

$$\begin{aligned} \sum _{i<j}S_{ij}^2f=\Delta _0f,\quad \text {for every}\quad f\in C^2(\mathbb {R}^N), \end{aligned}$$

where using the spherical coordinates \(x=r\omega \), \(\Delta _0f(r\omega )\) acts on the \(\omega \)-variable.

In particular, on \(S^{N-1}\) we have the decomposition \({\sum _{i<j}S_{ij}^2=\Delta _0}\).

Proof

We observe preliminary that

$$\begin{aligned} r^2D_{rr}=\sum _{i,j=1}^Nx_ix_jD_{ij}=2\sum _{i<j}x_ix_jD_{ij}+\sum _{i=1}^Nx_i^2D_{ii} \end{aligned}$$
(29)

and

$$\begin{aligned} S_{ij}^2= & {} (x_iD_j-x_jD_i)(x_iD_j-x_jD_i)=x_i^2D_{jj}+x_j^2D_{ii}-x_iD_i-x_jD_j\\&-2x_ix_jD_{ij}. \end{aligned}$$

Summing over \(i<j\) the last expression and using (29) we obtain

$$\begin{aligned} \sum _{i<j}S_{ij}^2= & {} \sum _{i<j}\left( x_i^2D_{jj}+x_j^2D_{ii}\right) -\sum _{i<j}\left( x_iD_i+x_jD_j\right) -2\sum _{i<j}x_ix_jD_{ij}\\= & {} \sum _{i\ne j}x_j^2D_{ii}-\sum _{i\ne j}x_iD_i-r^2D_{rr}+\sum _{i=1}^Nx_i^2D_{ii}\\= & {} \sum _{i=1}^N\left( r^2-x_i^2\right) D_{ii}-(N-1)rD_r-r^2D_{rr}+\sum _{i=1}^Nx_i^2D_{ii}\\= & {} r^2\Delta -(N-1)rD_r-r^2D_{rr}. \end{aligned}$$

Recalling that \(r^2\Delta =r^2D_{rr}+(N-1)rD_r+\Delta _0\) we get the conclusion. \(\square \)

Next we have the following integration by parts formula.

Proposition 4.5

For every \(i<j\) and for every \(u,v\in C^1(S^{N-1})\)

$$\begin{aligned} \int _{S^{N-1}} (S_{ij}u)v\,\mathrm{{d}}\sigma =-\int _{S^{N-1}} u(S_{ij}v)\,\mathrm{{d}}\sigma . \end{aligned}$$

Proof

Let \(i<j\) and \(u,v\in C^1(S^{N-1})\). We have obviously \(S_{ij}(uv)=S_{ij}u\,v+u\,S_{ij}v\) and so

$$\begin{aligned} \int _{S^{N-1}} (S_{ij}u)v\,\mathrm{{d}}\sigma&=-\displaystyle \int _{S^{N-1}}u\,S_{ij}v\,\mathrm{{d}}\sigma +\displaystyle \int _{S^{N-1}}S_{ij}(uv)\,\mathrm{{d}}\sigma . \end{aligned}$$

Using the Gauss–Green theorem, the claim immediately follows by observing that

$$\begin{aligned} \int _{S^{N-1}}S_{ij}(uv)\,\mathrm{{d}}\sigma= & {} \int _{S^{N-1}}\omega _iD_j(uv)-\omega _jD_i(uv)\,\mathrm{{d}}\sigma \\= & {} \int _{B(0,1)}D_{ij}(uv)-D_{ji}(uv)\,\mathrm{{d}}x=0. \end{aligned}$$

\(\square \)

Let \(\mathcal {H}_n\) be the set of the spherical harmonics of order n. We recall that from [9, Proposition 2.1 (iii)], we have

$$\begin{aligned} \Vert \phi \Vert _\infty \le \sqrt{\mathrm{{dim}}\mathcal H_n}\,\Vert \phi \Vert _{L^2(S^{N-1)}},\quad \text {for every}\;\phi \in \mathcal {H}_n. \end{aligned}$$

The following proposition shows that \(\mathcal {H}_n\) is preserved by \(S_{ij}\).

Proposition 4.6

Let \(\phi \in \mathcal {H}_n\). Then, for every \(i<j\), \(S_{ij}\phi \in \mathcal {H}_n\). Moreover, if \(-\lambda _n=-n(n+N-2)\) is the eigenvalue associated with \(\phi \), then

$$\begin{aligned} \Vert S_{ij}\phi \Vert _\infty\le & {} \sqrt{\lambda _n \mathrm{{dim}}\mathcal H_n}\,\Vert \phi \Vert _{L^2(S^{N-1)}}, \end{aligned}$$
(30)
$$\begin{aligned} \Vert \nabla _\tau \phi \Vert _\infty\le & {} \sqrt{\frac{N(N-1)}{2}\lambda _n \mathrm{{dim}}\mathcal H_n} \,\Vert \phi \Vert _{L^2(S^{N-1)}}. \end{aligned}$$
(31)

Proof

Let \(p(x)=r^n\phi (\omega )\); p is a homogeneous harmonic polynomial by construction and \(S_{ij}p\) is a polynomial of the same degree by the definition of \(S_{ij}\). Moreover, using (iv) of Proposition 4.1, we have

$$\begin{aligned} \Delta S_{ij}p=S_{ij}\Delta p=0 \end{aligned}$$

and so \(S_{ij}p\) is harmonic since from (ii) of Proposition 4.1 \(S_{ij}P(r\omega )=r^nS_{ij}\phi (\omega )\), we have \(S_{ij}\phi \in \mathcal {H}_n\). In particular,

$$\begin{aligned} \Delta _0 S_{ij}\phi =S_{ij}\Delta _0 \phi =-\lambda _n S_{ij}\phi \end{aligned}$$

and

$$\begin{aligned} \Vert S_{ij}\phi \Vert _\infty \le \sqrt{\mathrm{{dim}}\mathcal H_n}\,\Vert S_{ij}\phi \Vert _{L^2(S^{N-1)}}. \end{aligned}$$
(32)

Now, using propositions 4.5 and 4.4,

$$\begin{aligned} \sum _{i<j}\Vert S_{ij}\phi \Vert ^2_{L^2(S^{N-1)}}= & {} \sum _{i<j}\int _{S^{N-1}}S_{ij}\phi \, S_{ij}\phi \,\mathrm{{d}}\sigma =-\sum _{i<j}\int _{S^{N-1}}(S_{ij}^2\phi )\phi \,\mathrm{{d}}\sigma \\= & {} -\int _{S^{N-1}}\sum _{i<j}(S_{ij}^2\phi )\phi \,\mathrm{{d}}\sigma =-\int _{S^{N-1}}\Delta _0 \phi \, \phi \,\mathrm{{d}}\sigma \\= & {} \lambda _n\Vert \phi \Vert ^2_{L^2(S^{N-1)}}. \end{aligned}$$

The last inequality implies

$$\begin{aligned} \Vert S_{ij}\phi \Vert ^2_{L^2(S^{N-1)}}\le \sqrt{\lambda _n}\Vert \phi \Vert _{L^2(S^{N-1)}} \end{aligned}$$

which, combined with (32), yields (30). Finally, applying (28) and (30), it follows for every \(\omega \in S^{N-1}\)

$$\begin{aligned} |\nabla _\tau \phi (\omega )|^2&=\sum _{i<j}|S_{ij}\phi (\omega )|^2\le \frac{N(N-1)}{2}\lambda _n \mathrm{{dim}}\mathcal H_n \,\Vert \phi \Vert _{L^2(S^{N-1)}}, \end{aligned}$$

which proves (31). \(\square \)

Corollary 4.7

The tangential derivative of the zonal harmonics \(\mathbb {Z}^{(n)}\) satisfies

$$\begin{aligned} \Vert \nabla _{\tau }\mathbb {Z}^{(n)}\Vert _{\infty }\le \sqrt{\frac{1}{|S^{N-1}|}\frac{N(N-1)}{2}\lambda _n }\left( \mathrm{{dim}}\mathcal H_n\right) ^\frac{3}{2}. \end{aligned}$$

In particular, for a constant \(C=C(N)\) we have

$$\begin{aligned} \Vert \nabla _{\tau }\mathbb {Z}^{(n)}\Vert _{\infty }\le C n^{\frac{3n-4}{2}}. \end{aligned}$$

Proof

The first property is an immediate consequence of (31) and of the estimate

$$\begin{aligned} \Vert \mathbb {Z}^{(n)}\Vert _{L^2(S^{N-1})}\le \sqrt{|S^{N-1}|}\,\Vert \mathbb {Z}^{(n)}\Vert _\infty \le \sqrt{|S^{N-1}|}\,\frac{\mathrm{{dim}}\mathcal H_n}{|S^{N-1}|}. \end{aligned}$$

To prove the second inequality it is sufficient to recall the asymptotic behaviours \(\mathrm{{dim}}\mathcal H_n\approx n^{N-2}\), \(\lambda _n\approx n^2\) for \(n\rightarrow \infty \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metafune, G., Negro, L. & Spina, C. Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients. Mediterr. J. Math. 16, 138 (2019). https://doi.org/10.1007/s00009-019-1415-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1415-x

Mathematics Subject Classification

Keywords

Navigation