Skip to main content
Log in

On the Novel Ulam–Hyers Stability for a Class of Nonlinear \(\psi \)-Hilfer Fractional Differential Equation with Time-Varying Delays

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present some alternative results concerning the uniqueness and Ulam–Hyers stability of solutions for a kind of \(\psi \)-Hilfer fractional differential equations with time-varying delays. Under some updated criteria along with the generalized Gronwall inequality, the new constructive results have been established in the literature. The derived analysis has the ability to generalize and improve some other results from the literature. As an application, two typical examples are delineated to demonstrate the effectiveness of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, vol. 207. Elsevier, Amsterdam (2006)

    Google Scholar 

  2. Miller, K., Rose, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993). (ISBN: 0-471-58884-9)

    Google Scholar 

  3. Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Berlin (2016). (ISBN: 3319255606; 9783319255606)

    MATH  Google Scholar 

  4. Podlubny, I., Thimann, K.: Fractional Differential Equation: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999). (ISBN: 0125588402)

    Google Scholar 

  5. Chen, F., Liu, Z.: Asymptotic stability results for nonlinear fractional difference eqautions. J. Appl. Math. 2012, 155–172 (2012)

    Google Scholar 

  6. Abu-Saris, R., Al-Mdallal, Q.: On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16(3), 613–629 (2013)

    Article  MathSciNet  Google Scholar 

  7. Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74, 68–73 (2017)

    Article  MathSciNet  Google Scholar 

  8. Khudair, A., Haddad, S., Khalaf, S.: Restricted fractional differential transform for solving irrational order fractional differential equations. Chaos Solitons Fractals 101, 81–85 (2017)

    Article  MathSciNet  Google Scholar 

  9. Liu, K., Jiang, W.: Stability of nonlinear Caputo fractional differential equations. Appl. Math. Model. 40(5–6), 3919–3924 (2016)

    Article  MathSciNet  Google Scholar 

  10. Baleanu, D., Wu, G., Bai, Y., Chen, F.: Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlinear Sci. Numer. Simul. 48, 520–530 (2017)

    Article  MathSciNet  Google Scholar 

  11. Sousa, J., Oliveira, E.: Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81, 50–56 (2018)

    Article  MathSciNet  Google Scholar 

  12. Sousa, J., Oliveira, E.: On the Ulam–Hyers–Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator. J. Fixed Point Theory Appl. 20, 96 (2018)

    Article  MathSciNet  Google Scholar 

  13. Mozyrska, D., Wyrwas, M.: Stability of discrete fractional linear systems with positive orders. Conf. Pap. Arch. 51–1, 8115–8120 (2017)

    MATH  Google Scholar 

  14. Wu, G., Baleanu, G., Luo, W.: Lyapunov functions for Riemann–Liouville-like fractional difference equations. Appl. Math. Comput. 314, 228–236 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Lizama, C., Murilla-Arcila, M.: Maximal regularity in \(l_p\) spaces for discrete time fractional shifted equations. J. Differ. Equ. 263(6), 3175–3196 (2017)

    Article  Google Scholar 

  16. Wang, J., Zhou, Y.: Mittag–Leffler–Ulam stabilities of fractional evolution equations. Appl. Math. Lett. 25(4), 723–728 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ali, Z., Zada, A., Shah, K.: On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull. Malays. Math. Sci. Soc. 2, 4 (2019). https://doi.org/10.1007/s40840-018-0625-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Y.: On piecewise continuous solutions of higher order impulsive fractional differential equations and applications. Appl. Math. Comput. 287–288, 38–49 (2016)

    Article  MathSciNet  Google Scholar 

  19. Sousa, J., Oliveira, E.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

    Article  MathSciNet  Google Scholar 

  20. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  Google Scholar 

  21. Abdeljawad, T., TORRES, F.: Symmetric duality for left and right Riemann–Liouville and Caputo fractional differences. Arab J. Math. Sci 23, 157–172 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Dassios, I., Baleanu, D.: Duality of singular linear systems of fractional nabla difference equations. Appl. Math. Model. 39, 4180–4195 (2015)

    Article  MathSciNet  Google Scholar 

  23. Chen, F., Zhou, Y.: Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discret. Dyn. Nat. Soc. 2013, 7 (2013). https://doi.org/10.1155/2013/459161. (Article ID.459161)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sousa, J., Oliveira, D., Oliveira, E.: On the existence and stability for noninstantaneous impulsive fractional integrodifferential equation. Math. Methods Appl. Sci. 42, 1249–1261 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Li, X.: Ulam–Hyers stability of fractional Langevin equations. Appl. Math. Comput. 258, 72–83 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Li, M., Wang, J.: Exploring delayed Mittag–Leffler type matrix functions to study finite time stability of fractional delay differential equations. Appl. Math. Comput. 324, 254–265 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Hei, X., Wu, R.: Finite-time stability of impulsive fractional-order systems with time-delay. Appl. Math. Model. 40, 4285–4290 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, Q., Lu, D., Fang, Y.: Stability analysis of impulsive fractional differential systems with delay. Appl. Math. Lett. 40, 1–6 (2015)

    Article  MathSciNet  Google Scholar 

  29. Liu, K., Wang, J., O’Regan, D.: Ulam–Hyers–Mittag–Leffler stability for \(\psi \)-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019, 50 (2019). https://doi.org/10.1186/s13662-019-1997-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Sousa, J., Oliveira, E.: A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator. Differ. Equ. Appl. 11(n.1), 87–106 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for the helpful suggestions. This work was supported by the National Natural Science Foundation of China (Grant no. 11471109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Shah, K. & Luo, Z. On the Novel Ulam–Hyers Stability for a Class of Nonlinear \(\psi \)-Hilfer Fractional Differential Equation with Time-Varying Delays. Mediterr. J. Math. 16, 112 (2019). https://doi.org/10.1007/s00009-019-1387-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1387-x

Keywords

Mathematics Subject Classification

Navigation