Skip to main content
Log in

Sequence of Linear Operators in Non-Archimedean Banach Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is to find a non-Archimedean counterpart of the generalized convergence of closable unbounded linear operators as defined by Kato (Perturbation Theory for Linear Operators, 2nd edn. In: Grundlehren der Mathematischen Wissenschaften, Band 132, Springer, Berlin, 1976). Moreover, we prove that this convergence can be considered as a generalization of convergence in norm for unbounded linear operators on non-Archimedean Banach spaces (see Theorem 3.8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar, A., Jeribi, A.: The Weyl essential spectrum of a sequence of linear operators in Banach spaces. Indag. Math. (N.S.) 27(1), 282–295 (2016)

    Article  MathSciNet  Google Scholar 

  2. Artin, E.: Algebraic Numbers and Algebraic Functions. Gordon and Breach Science Publishers, New York (1967). xiii+349 pp

    MATH  Google Scholar 

  3. Ball, J.A., Sasane, A.J.: Equivalence of a behavioral distance and the gap metric. Syst. Control Lett. 55(3), 214–222 (2006)

    Article  MathSciNet  Google Scholar 

  4. Basu, S., Diagana, T., Ramaroson, F.: A \(p\)-adic version of Hilbert–Schmidt operators and applications. J. Anal. Appl. 2(3), 173–188 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Brown, A.L.: On the space of subspaces of a Banach space. J. Lond. Math. Soc. 5, 67–73 (1972)

    Article  MathSciNet  Google Scholar 

  6. Cvetković, D.: On gaps between bounded operators. Publ. Inst. Math. (Beograd) (N.S.) 72(86), 49–54 (2002)

    Article  MathSciNet  Google Scholar 

  7. Diagana, T.: Towards a theory of some unbounded linear operators on \(p\)-adic Hilbert spaces and applications. Ann. Math. Blaise Pascal 12(1), 205–222 (2005)

    Article  MathSciNet  Google Scholar 

  8. Diagana, T.: Non-Archimedean linear operators and applications, Nova Science Publishers, Inc., Huntington, NY, xiv+92 pp. ISBN: 978-1-60021-405-9, 1-60021-405-3 (2007)

  9. Diagana, T., Ramaroson, F.: Non-Archimedean operator theory. Springer Briefs in Mathematics. Springer, Cham, xiii+156 pp. ISBN: 978-3-319-27322-8, 978-3-319-27323-5 (2016)

    Book  Google Scholar 

  10. Diarra, B.: An operator on some ultrametric Hilbert spaces. J. Anal. 6, 55–74 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Diarra, B.: Bounded linear operators on ultrametric Hilbert spaces. Afr. Diaspora J. Math. (N.S.) 8(2), 173–181 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Dwork, B.: On the rationality of the zeta function of an algebraic variety. Am. J. Math. 82, 631–648 (1960)

    Article  MathSciNet  Google Scholar 

  13. Gouvêa, F.Q.: \(p\)-adic Numbers, An Introduction, 2nd edn. Universitext. Springer, Berlin, vi+298 pp. ISBN: 3-540-62911-4 (1997)

    Google Scholar 

  14. Gruson, L.: Catégories d’espaces de Banach ultramétriques (French). Bull. Soc. Math. Fr. 94, 287–299 (1966)

    Article  Google Scholar 

  15. Gruson, L.: Théorie de Fredholm \(p\)-adique (French). Bull. Soc. Math. Fr. 94, 67–95 (1966)

    Article  Google Scholar 

  16. Hensel, K.: Über eine neue Begründung der Theorie der algebraischen Zahlen (German). J. Reine Angew. Math. 128, 1–32 (1905)

    Article  MathSciNet  Google Scholar 

  17. Janz, R.: Holomorphic families of subspaces of a Banach Space. Special classes of linear operators and other topics (Bucharest, 1986), pp. 155–167, Oper. Theory Adv. Appl., vol. 28. Birkhäuser, Basel (1988)

    Chapter  Google Scholar 

  18. Jeribi, A.: Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer, New York (2015)

    Book  Google Scholar 

  19. Jeribi, A.: Linear operators and their essential pseudospectra. Apple Academic Press, Oakville, xvi+352 pp. ISBN: 978-1-77188-699-4; 978-1-351-04627-5 (2018)

    Book  Google Scholar 

  20. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. In: Grundlehren der Mathematischen Wissenschaften, Band 132, Springer, Berlin (1976)

  21. Krein, M.G., Krasnoselski, M.A.: Theoremes fundamentaux sur l’extension d’operateurs Hermitiens. Uspekhi Matematicheskikh Nauk 2(3(19)), 60–106 (1947)

    Google Scholar 

  22. Monna, A.F.: On non-Archimedean linear spaces (Dutch). Nederl. Akad. Wetensch. Verslagen Afd. Natuurkunde 52, 308–321 (1943)

    MathSciNet  MATH  Google Scholar 

  23. Monna, A.F.: Analyse non-Archimédienne (French). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 56. Springer, Berlin, vii+119 pp (1970)

    Chapter  Google Scholar 

  24. Ostrowski, M.I.: On properties of the opening and related closeness characterizations of Banach spaces. Am. Math. Soc. Transl. 136, 109–119 (1987)

    Google Scholar 

  25. Perez-Garcia, C., Vega, S.: Perturbation theory of \(p\)-adic Fredholm and semi-Fredholm operators. Indag. Math. (N.S.) 15(1), 115–127 (2004)

    Article  MathSciNet  Google Scholar 

  26. Schikhof, W.H.: Ultrametric calculus. An introduction to \(p\)-adic analysis. Cambridge Studies in Advanced Mathematics, vol. 4. Cambridge University Press, Cambridge, viii+306 pp. ISBN: 0-521-24234- 7 (1984)

  27. Serre, J.P.: Endomorphismes complètement continus des espaces de Banach \(p\)-adiques (French). Inst. Hautes Études Sci. Publ. Math. 12, 69–85 (1962)

    Article  Google Scholar 

  28. Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York; Chapman and Hall, Ltd., London, xvi+423 pp (1958)

  29. van der Put, M.: The ring of bounded operators on a non-Archimedean normed linear space. Nederl. Akad. Wetensch. Proc. Ser. A 71 Indag. Math. 30, 260–264 (1968)

    Article  MathSciNet  Google Scholar 

  30. Van Rooij, A.C.M.: Non-Archimedean Functional Analysis. Monographs and Textbooks in Pure and Applied Mathematics, vol. 51. Marcel Dekker, Inc., New York, x+404 pp. ISBN: 0-8247-6556-7 (1978)

Download references

Acknowledgements

The authors are grateful to reviewer(s) for their insightful recommendations and valuable suggestions related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymen Ammar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, A., Jeribi, A. & Lazrag, N. Sequence of Linear Operators in Non-Archimedean Banach Spaces. Mediterr. J. Math. 16, 130 (2019). https://doi.org/10.1007/s00009-019-1385-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1385-z

Keywords

Mathematics Subject Classification

Navigation