Skip to main content
Log in

A Fixed Point Theorem for Systems of Nonlinear Operator Equations and Applications to \((p_1, p_2)\)-Laplacian System

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new fixed point theorem for systems of nonlinear operator equations is established by means of topological degree theory and positively 1-homogeneous operator, where the components has a positively 1-homogeneous majorant or minorant. As applications, the existence of positive solutions for \((p_1, p_2)\)-Laplacian system is considered under some conditions concerning the positive eigenvalues corresponding to the relevant positively 1-homogeneous operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deimling, K.: Nonlinear functional analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  2. Guo, D., Lakshmikantham, V.: Nonlinear problems in abstract cones. Academic Press, Boston (1988)

    MATH  Google Scholar 

  3. Krasnosel’skiĭ’s, M. A.: Positive solutions of operator equations, Translated from the Russian by R. E. Flaherty, edited by L. F. Boron, P. Noordhoff Ltd., Groningen (1964)

  4. Krasnosel’skiĭ’s, M. A.: Topological methods in the theory of nonlinear integral equations. The Macmillan, New York (1964)

  5. Budişan, S.: Generalizations of Krasnosel’skiĭ’s fixed point theorem in cones. Stud. Univ. Babeş-Bolyai Math. 56(4):165-171 (2011)

  6. Cui, Y., Sun, J.: A generalization of Mahadevan’s version of the Krein–Rutman theorem and applications to \(p\)-Laplacian boundary value problems, abstract and applied analysis, vol 2012 (Article ID 305279) (2012)

  7. Cui, Y., Wang, F., Zou, Y.: Computation for the fixed point index and its applications. Nonlinear Anal. 71, 219–226 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cui, Y., Sun, J.: Fixed point theorems for a class of nonlinear operators in Hilbert spaces with lattice structure and application. Fixed Point Theory Appl. 2013, 345 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, Y.: Computation of topological degree in ordered Banach spaces with lattice structure and applications. Appl. Math. 58, 689–702 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cui, Y., Sun, J.: Fixed point theorems for a class of nonlinear operators in Hilbert spaces and applications. Positivity 15, 455–464 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kwong, M.K..: On Krasnosel’skiĭ’s cone fixed point theorem. Fixed Point Theory Appl. vol 2008 (Article ID 164537) (2008)

  12. Precup, R.: A vector version of Krasnosel’skiĭ’s fixed point theorem in cones and positive periodic solutions of nonlinear systems. J. Fixed Point Theory Appl. Birkhauser 2, 141–151 (2007)

    Article  MATH  Google Scholar 

  13. Precup, R.: Moser–Harnack inequality, Krasnosel’skiĭ’s type fixed point theorems in cones and elliptic problems. Topol. Methods Nonlinear Anal. 40, 301–313 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Precup, R.: Componentwise compression–expansion conditions for systems of nonlinear operator equations and appliccations. In: Cabada, A., Liz, E., Nieto, J.J. (eds) AIP conference proceedings, vol 1124, pp 284-293 (2009)

  15. Precup, R.: Compression-expansion fixed point theorems in two norms. Ann. Tiberiu Popoviciu Semin. Funct. Eq. Approx. Convexity 3:157–163 (2005).

  16. O’Regan, D., Precup, R.: Compression–expansion fixed point theorem in two norms and applications. J. Math. Anal. Appl. 309, 383–391 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, J., Cui, Y.: Fixed point theorems for a class of nonlinear operators in Riesz spaces. Fixed Point Theory 14, 185–192 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Budişan, S., Precup, R.: Positive solutions of functional-differential systems via the vector version of Krasnosel’skiĭ’s fixed point theorem in cones. Carpathian J. Math. 27(2), 165–172 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Djebali, S., Moussaoui, T., Precup, R.: Fourth-order p-Laplacian nonlinear systems via the vector version of Krasnosel’skiĭ’s fixed point theorem. Mediterr. J. Math. 6(4), 449–463 (2009)

    Article  MATH  Google Scholar 

  20. Precup, R.: Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems. J. Math. Anal. Appl. 352, 48–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, X., Lü, H.: Multiplicity of positive solutions for a \((p_1, p_2)\)-Laplacian system and its applications. Nonlinear Anal. Real World Appl. 13, 2375–2390 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Webb, J.R.L.: Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 82(2), 420–436 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang, K.C.: A nonlinear Krein–Rutman theorem. J. Syst. Sci. Complex. 22(4), 542–554 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cui, Y., Zou, Y.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal. Modell. Control 21: 828-838 (2016)

  26. Cui, Y., Liu, L., Zhang, X.: Uniqueness and existence of positive solutions for singular differential systems with coupled integral boundary value problems. Abstr. Appl. Anal. vol 2013, 9 pages (2013) (Article ID 340487)

  27. Liu, L., Sun, F., Zhang, X., Wu, Y.: Bifurcation analysis for a singular differential system with two parameters via to degree theory. Nonlinear Anal. MC 22(1), 31–50 (2017)

    MathSciNet  Google Scholar 

  28. Liu, L., Li, H., Liu, Ch., Wu, Y.: Existence and uniqueness of positive solutions for singular fractional differential systems with coupled integral boundary value problems. J. Nonlinear Sci. Appl. 10, 243–262 (2017)

    Article  MathSciNet  Google Scholar 

  29. Mahadevan, R.: A note on a non-linear Krein–Rutman theorem. Nonlinear Anal. TMA 67(11):3084-3090 (2007)

  30. Marllet-Paret, J., Nussbaum, R.D.: Eigenvalues for a class of homogeneous cone maps arising from max-plus operators. Discrete Contin. Dyn. Syst. 8(3), 519–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nussbaum, R. D.: Eigenvectors of nonlinear positive operators and the linear Krein–Rutman theorem. Fixed point theory, Lecture notes in mathematics, vol 886. Springer, Berlin, pp 309–330 (1981)

  32. Sun, F., Liu, L., Zhang, X., Wu, Y.: Spectral analysis for a singular differential system with integral boundary conditions. Mediterr. J. Math. 13, 4763–4782 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Webb, J.R.L.: Remarks on \(u_0\)-positive operators. J. Fixed Point Theory Appl. 5, 37–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74, 68–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, X., Liu, L., Wu, Y.: Existence and uniqueness of iterative positive solutions for singular Hammerstein integral equations. J. Nonlinear Sci. Appl. 10, 3364–3380 (2017)

    Article  MathSciNet  Google Scholar 

  36. Hu, S., Wang, H.: Convex solutions of boundary value problems arising from Monge-Amp\(\grave{e}\)re equations. Discrete Contin. Dyn. Syst. 16(3), 705–720 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Project Supported by the National Natural Science Foundation of China (11371221) and Shandong Natural Science Foundation (ZR2018MA011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., He, G. A Fixed Point Theorem for Systems of Nonlinear Operator Equations and Applications to \((p_1, p_2)\)-Laplacian System. Mediterr. J. Math. 15, 74 (2018). https://doi.org/10.1007/s00009-018-1119-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1119-7

Mathematics Subject Classification

Keywords

Navigation