Skip to main content
Log in

Approximation of the Inverse Frame Operator and Stability of Hilbert–Schmidt Frames

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the Hilbert–Schmidt frame (HS-frame) theory for separable Hilbert spaces. We first present some characterizations of HS-frames and prove that HS-frames share many important properties with frames. Then, we show how the inverse of the HS-frame operator can be approximated using finite-dimensional methods. Finally, we present a classical perturbation result and prove that HS-frames are stable under small perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdollahpour, M.R., Najati, A.: Approximation of the inverse G-frame operator. Proc. Indian Acad. Sci. Math. Sci. 121(2), 143–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldroubi, A., Cabrelli, C., Molter, U.: Wavelets on irregular grids with arbitrary dilation matrices and frame atomics for \(L^2({\mathbb{R}}^d)\). Appl. Comput. Harmon. Anal. 17(2), 119–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askari-Hemmat, A., Dehghan, M., Radjabalipour, M.: Generalized frames and their redundancy. Proc. Am. Math. Soc. 129(4), 1143–1147 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casazza, P.G., Christensen, O.: Approximation of the frame coefficients using finite dimensional methods. J. Electron. Imag. 6(4), 479–483 (1997)

    Article  Google Scholar 

  5. Casazza, P.G., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Casazza, P.G., Christensen, O.: Approximation of the inverse frame operator and applications to Gabor frames. J. Approx. Theory 103(2), 338–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P.G., Kutyniok, G.: Frames of subspaces. Contemp. Math. 345, 87–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christensen, O.: Frames and the projection method. Appl. Comput. Harmon. Anal. 1, 50–53 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christensen, O.: A Paley–Wiener theory for frames. Proc. Am. Math. Soc. 123(7), 2199–2201 (1995)

    Article  MATH  Google Scholar 

  10. Christensen, O.: Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods. J. Math. Anal. Appl. 199, 256–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christensen, O.: Finite-dimensional approximation of the inverse frame operator. J. Fourier Anal. Appl. 6(1), 79–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  13. Christensen, O., Eldar, Y.C.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17(1), 48–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  15. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dörfler, M., Feichtinger, H.G., Gröchenig, K.: Time–frequency partitions for the Gelfand triple \(({S_0}, {L^2}, {S^{\prime }_0}) \). Math. Scand. 98(1), 81–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  18. Favier, S., Zalik, R.: On the stability of frames and Riesz bases. Appl. Comput. Harmon. Anal. 2(2), 160–173 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fornasier, M.: Quasi-orthogonal decompositions of structured frames. J. Math. Anal. Appl. 289(1), 180–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  21. Guo, X.: Perturbations of invertible operators and stability of g-frames in Hilbert spaces. Results Math. 64(3–4), 405–421 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Han, D., Larson, D.R.: Frames, bases and group representations. American Mathematical Society, 697 (2000)

  23. Kaftal, V., Larson, D., Zhang, S.: Operator-valued frames. Trans. Am. Math. Soc. 361(12), 6349–6385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10(4), 409–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Najati, A., Faroughi, M.H., Rahimi, A.: G-frames and stability of g-frames in Hilbert spaces. Methods Funct. Anal. Topol. 14(3), 271–286 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Poria, A.: Behavior of Gabor frame operators on Wiener amalgam spaces. Int. J. Wavelets Multiresolut. Inf. Process. 14(4), 1650028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Poria, A.: Some identities and inequalities for Hilbert–Schmidt frames. Mediterr. J. Math. 14(2), Art. 59 (2017)

  28. Poria, A., Swain, J.: Hilbert space valued Gabor frames in weighted amalgam spaces (2015) (preprint). arXiv:1508.01646v3

  29. Ringrose, J.R.: Compact non-self-adjoint operators. In: Van Nostrand Reinhold mathematical studies, vol. 35, 238 p. Nostrand Reinhold Co (1971). ISBN: 9780442069568

  30. Sadeghi, G., Arefijamaal, A.: von Neumann–Schatten frames in separable Banach spaces. Mediterr. J. Math. 9(3), 525–535 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun, W.: Stability of g-frames. J. Math. Anal. Appl. 326(2), 858–868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Young, R.M.: An Introduction to Non-Harmonic Fourier Series. Academic Press, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudha Poria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poria, A. Approximation of the Inverse Frame Operator and Stability of Hilbert–Schmidt Frames. Mediterr. J. Math. 14, 153 (2017). https://doi.org/10.1007/s00009-017-0956-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0956-0

Keywords

Mathematics Subject Classification

Navigation