Skip to main content
Log in

A Weak Local Irregularity Property in \(S^\nu \) Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

It has been shown that, from the prevalence point of view, elements of the \(S^\nu \) spaces are almost surely multifractal, while the Hölder exponent at almost every point is almost surely equal to the maximum Hölder exponent. We show here that typical elements of \(S^\nu \) are very irregular by proving that they almost surely satisfy a weak irregularity property: there exists a local irregularity exponent which is constant for almost every element of \(S^\nu \) and equal to the lowest Hölder exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abry, P., Goncalves, P., Lévy-Véhel, J.:. Lois d’échelle, Fractales et Ondelettes. Hermes (2002)

  2. Arneodo, A., Audit, B., Decoster, N., Muzy, J.-F., Vaillant, C.: Wavelet-based multifractal formalism: Applications to dna sequences, satellite images of the cloud structures and stock market data. In: Bunde, A., Kropp, J., Schellnhuber, H.J. (eds.) The Science of Disaster. Springer, New-York (2002)

    Google Scholar 

  3. Aubry, J.-M., Bastin, F., Dispa, S.: Prevalence of multifractal functions in \(S^\nu \) spaces. J. Fourier Anal. Appl. 13, 175–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubry, J.-M., Bastin, F., Dispa, S., Jaffard, S.: Topological properties of the sequences spaces \(S^\nu \). J. Math. Anal. Appl. 321, 364–387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christensen, J.: On sets of Haar measure zero in abelian Polish groups. Isr. J. Math. 13, 255–260 (1972)

    Article  MathSciNet  Google Scholar 

  6. Clausel, M.: Lacunary fractional Brownian motion. ESAIM Probab. Stat. 16, 352–374 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clausel, M., Nicolay, S.: Wavelets techniques for pointwise anti-Hölderian irregularity. Constr. Approx. 33, 41–75 (2009)

    Article  MATH  Google Scholar 

  8. Clausel, M., Nicolay, S.: Some prevalent results about strongly monoHölder functions. Nonlinearity 23, 2101–2116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dahmen, W., Pössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations: I stability and convergence. Math. Z. 215, 583–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  12. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

  13. Fraysse, A., Jaffard, S.: How smooth is almost every function in a Sobolev space? Rev. Mat. Iberoamericana 22, 663–682 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frisch, U., Parisi, G: On the singularity structure of fully developed turbulence. In: Proceedings of the International Summer school Physics Enrico Fermi, pp. 84–88 (1998)

  15. Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hardy, G.H.: Weierstrass’s non differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)

    MathSciNet  MATH  Google Scholar 

  17. Hunt, B.R., Sauer, T., Yorke, J.A.: Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Am. Math. Soc. 27, 217–238 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jaffard, S.: Multifractal formalism for functions part I: results valid for all functions. SIAM J. Math. Anal. 28(4), 944–970 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jaffard, S.: Multifractal formalism for functions part II: self-similar functions. SIAM J. Math. Anal. 28(4), 971–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jaffard, S.: Beyond Besov spaces, part I: distribution of wavelet coeficients. J. Fourier Anal. Appl. 10, 221–246 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaffard, S.: Wavelet techniques in multifractal analysis, fractal geometry and applications. Proc. Symp. Pure Math. 72, 91–151 (2004)

    Article  MATH  Google Scholar 

  22. Jaffard, S., Meyer, Y., Ryan, R.: Wavelets: Tools for Science and Technology. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  23. Jaffard, S., Nicolay, S.: Pointwise smoothness of space-filling functions. Appl. Comput. Harmon. Anal. 26, 181–199 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kleyntssens, T., Esser, C., Nicolay, S.: A multifractal formalism based on the \(S^\nu \) spaces: from theory to practice (submitted)

  25. Krantz, S.G.: Lipschitz spaces, smoothness of functions, and approximation theory. Expos. Math. 1, 193–260 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Lévy Véhel, J., Riedi, R.: Fractional Brownian motion and data traffic modeling: the other end of the spectrum. In: Lévy Véhel, J., Lutton, E., Tricot, C. (eds.) Fractals in Engineering. Springer, Berlin (1997)

    Chapter  Google Scholar 

  27. Lévy-Véhel, J., Seuret, S.: The local Hölder function of a continuous function. Appl. Comput. Harmon. Anal. 13, 263–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lévy-Véhel, J., Tricot, C.: On various multifractal spectra. In: Bandt, C., Mosco, U., Zähle, M. (eds.) Fractal Geometry and Stochastics III, vol. 57. Birkhäuser, Basel (2004)

    Google Scholar 

  29. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  30. Marin, Z., Batchelder, K.A., Toner, B.C., Guimond, L., Gerasimova-Chechkina, E., Harrow, A.R., Arneodo, A., Khalil, A.: Mammographic evidence of microenvironment changes in tumorous breasts. Med. Phys. (2017). doi:10.1002/mp.12120

  31. Mattila, P.: Geometry of Sets and Measures in Euclidian Spaces. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  32. Meyer, Y.: Ondelettes et opérateurs. Hermann (1990)

  33. Ben Slimane, M.: Multifractal formalism and anisotropic selfsimilar functions. Math. Proc. Cambr. Philos. Soc. 124, 329–363 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sreenivasan, K.R.: Fractals and multifractals in turbulence. Ann. Rev. Fluid Mech. 23, 539–600 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Nicolay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausel, M., Nicolay, S. A Weak Local Irregularity Property in \(S^\nu \) Spaces. Mediterr. J. Math. 14, 102 (2017). https://doi.org/10.1007/s00009-017-0902-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0902-1

Mathematics Subject Classification

Keywords

Navigation