Skip to main content
Log in

Convergence in Variation for Bernstein-Type Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we deal with Bernstein-type operators defined by Cárdenas-Morales et al. as \({B_{n}(f \circ \tau^{-1}) \circ \tau}\), where \({B_{n}}\) is the nth Bernstein polynomial (Comput Math Appl 62(1):158–163, 2011). Assuming that \({\tau}\) and f are absolutely continuous functions on \({[0, 1]}\) and inf \({\tau ^{\prime} (x) \geq m > 0}\) as well as \({\tau (0) = 0}\) and \({\tau (1) = 1,}\) we study the convergence of Bernstein-type operators to f in variation seminorm. Moreover, we give a Voronovskaja-type formula and a Jackson-type estimate in the sense of Bardaro et al. (Analysis 23:299–340, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agratini O.: On the variation detracting property of a class of operators. Appl. Math. Lett. 19(11), 1261–1264 (2006))

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardaro C., Butzer P.L., Stens R.L., Vinti G.: Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis 23, 299–340 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)

  4. Cárdenas-Morales D., Garrancho P., Raşa I.: Bernstein-type operators which preserve polynomials. Comput. Math. Appl. 62(1), 158–163 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karsli H.: On convergence of Chlodovsky and Chlodovsky–Kantorovich polynomials in the variation seminorm. Mediterr. J. Math. 10, 41–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kivinukk A., Metsmagi T.: Approximation in variation by the Meyer–König and Zeller operators. Proc. Estonian Acad. Sci. 60(2), 88–97 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan, Delhi (1960)

  8. Lesnic, D.: Characterizations of the functions with bounded variation. In: Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics, ICTAMI, Alba Iulia, pp. 47–54 (2003)

  9. Lorentz, G.G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953) (2nd edn, Chelsea, New York, 1986)

  10. Natanson, I.P.: Theory of Functions of a Real Variable, vol. I. Frederick Ungar, New York (1983)

  11. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. NIST and Cambridge University Press, Cambridge (2010)

  12. Pop O.T., Farcaş M.D.: About Bernstein polynomial and the Stirling numbers of second type. Creative Math. 14, 53–56 (2005)

    MATH  Google Scholar 

  13. Stein E.M.: Functions of exponential type. Ann. Math. 65(2), 582–592 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülen Başcanbaz-Tunca.

Additional information

Dedicated to the memory of Akif D. Gadjiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İnce İlarslan, H.G., Başcanbaz-Tunca, G. Convergence in Variation for Bernstein-Type Operators. Mediterr. J. Math. 13, 2577–2592 (2016). https://doi.org/10.1007/s00009-015-0640-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0640-1

Mathematics Subject Classification

Keywords

Navigation