Skip to main content
Log in

Foliated Lie and Courant Algebroids

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

If A is a Lie algebroid over a foliated manifold \({(M, {\mathcal {F}})}\), a foliation of A is a Lie subalgebroid B with anchor image \({T{\mathcal {F}}}\) and such that A/B is locally equivalent with Lie algebroids over the slice manifolds of \({\mathcal F}\). We give several examples and, for foliated Lie algebroids, we discuss the following subjects: the dual Poisson structure and Vaintrob's supervector field, cohomology and deformations of the foliation, integration to a Lie groupoid. In the last section, we define a corresponding notion of a foliation of a Courant algebroid A as a bracket–closed, isotropic subbundle B with anchor image \({T{\mathcal {F}}}\) and such that \({B^{ \bot } /B}\) is locally equivalent with Courant algebroids over the slice manifolds of \({\mathcal F}\). Examples that motivate the definition are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bott R.: Lectures on characteristic classes, Lect. Notes in Math., 279. Springer– Verlag, Berlin (1972)

    Google Scholar 

  2. Bursztyn H., Cavalcanti G.R., Gualtieri M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211, 726–765 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cariñena J.F., Nunesda Costa J.M., Santos P.: Reduction of Lie algebroids. Int. J. Geom. Methods Mod. Phys. 2, 965–991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Courant T.: Dirac manifolds. Trans. Amer. Math. Soc. 319, 361–661 (1990)

    Article  MathSciNet  Google Scholar 

  5. M. Crainic and R. L. Fernandes, Exotic Characteristic Classes of Lie Algebroids, in: Quantum Field Theory and Noncommutative Geometry, Lect. Notes in Physics, 662, Springer–Verlag, Berlin, 2005.

  6. Fernandes R.: Lie algebroids, holonomy and characteristic classes. Adv. Math. 170, 119–179 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Heitsch J.L.: A cohomology for foliated manifolds. Comment. Math. Helv. 50, 197–218 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kodaira K., Spencer D.C.: Multifoliate structures, Ann. of Math. 74, 52–100 (1961)

    MathSciNet  Google Scholar 

  9. C. Laurent–Gengoux, M. Stiénon and P. Xu, Holomorphic Poisson manifolds and holomorphic Lie algebroids, Int. Math. Res. Not. IMRN 2008, DOI:10.1093/imrn/rnn088, 46 pp.

  10. C. Laurent–Gengoux, M. Stiénon and P. Xu, Integration of holomorphic Lie algebroids, arXiv:0803.2031v2[mathDG].

  11. Lehmann D.: Classes caractéristiques et J–connexité des espaces de connexions. Ann. Inst. Fourier (Grenoble) 24, 267–306 (1974)

    MATH  MathSciNet  Google Scholar 

  12. Lichnerowicz A.: Sur l'algèbre de Lie des Champs de Vecteurs. Comment. Math. Helvetici 51, 343–368 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lichnerowicz A.: Les variétées de Poisson et leurs algèbres de Lie associées. J. Diff. Geom. 12, 253–300 (1977)

    MATH  MathSciNet  Google Scholar 

  14. Liu Z.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Diff. Geom. 45, 547–574 (1997)

    MathSciNet  Google Scholar 

  15. Mackenzie K.: General Theory of Lie Groupoids and Lie Algebroids, Lect. Notes, London Math. Soc., 213. Cambridge Univ. Press, Cambridge (205))

    Google Scholar 

  16. Mackenzie K., Xu P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73, 415–452 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moerdijk I., Mrčun J.: On the integrability of Lie subalgebroids. Adv. Math. 204, 101–115 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Molino P.: Riemannian Foliations, Progress in Math. Series, 73. Birkhäuser, Boston, Basel (1988)

    Google Scholar 

  19. P. Ševera, Letters to Alan Weinstein, unpublished, 1998.

  20. Ševera P., Weinstein A.: Poisson geometry with a 3-form background. Progr. Theoret. Phys. Suppl. 144, 145–154 (2001)

    Google Scholar 

  21. Vaintrob A.: Lie algebroids and homological vector fields. Russian Math. Surveys. 52(2), 428–429 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Vaisman I.: Variétés riemanniennes feuilletées. Czechosl. Math. J. 21, 46–75 (1971)

    MathSciNet  Google Scholar 

  23. Vaisman I.: Cohomology and Differential Forms. M. Dekker, Inc., New York (1973)

    MATH  Google Scholar 

  24. Vaisman I.: Transitive Courant Algebroids. Intern. J. of Math. and Math. Sci. 2005(11), 1737–1758 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vaisman I.: Isotropic Subbundles of \({TM \oplus T*M}\). Int. J. Geom. Methods Mod. Phys. 4, 487–574 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Vaisman I.: Geometric quantization of weak-Hamiltonian functions. J. of Geom. and Physics 59, 35–49 (2009). DOI:10.1016/j.geomphys.2008.09.001

    Article  MATH  MathSciNet  Google Scholar 

  27. Zambon M.: Reduction of branes in generalized complex geometry. J. of Symplectic Geometry 6, 353–378 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izu Vaisman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisman, I. Foliated Lie and Courant Algebroids. Mediterr. J. Math. 7, 415–444 (2010). https://doi.org/10.1007/s00009-010-0045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-010-0045-0

Mathematics Subject Classification (2010)

Keywords

Navigation