Skip to main content
Log in

Graded Symmetry Groups: Plane and Simple

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The symmetries described by Pin groups are the result of combining a finite number of discrete reflections in (hyper)planes. The current work shows how an analysis using geometric algebra provides a picture complementary to that of the classic matrix Lie algebra approach, while retaining information about the number of reflections in a given transformation. This imposes a type of graded structure on Lie groups, not evident in their matrix representation. Embracing this graded structure, we prove the invariant decomposition theorem: any composition of k linearly independent reflections can be decomposed into \(\lceil {k/2}{\rceil }\) commuting factors, each of which is the product of at most two reflections. This generalizes a conjecture by M. Riesz, and has e.g. the Mozzi–Chasles’ theorem as its 3D Euclidean special case. To demonstrate its utility, we briefly discuss various examples such as Lorentz transformations, Wigner rotations, and screw transformations. The invariant decomposition also directly leads to closed form formulas for the exponential and logarithmic functions for all Spin groups, and identifies elements of geometry such as planes, lines, points, as the invariants of k-reflections. We conclude by presenting a novel algorithm for the construction of matrix/vector representations for geometric algebras \({\mathbb {R}}^{{}}_{pqr}\), and use this in \(\text {E}({3})\) to illustrate the relationship with the classic covariant, contravariant and adjoint representations for the transformation of points, planes and lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable.

Notes

  1. When \(|k-l|= k+l\) we have \(xy = x \wedge y.\)

  2. There are various other definition of inner products being used, such as contractions. For an overview see [9].

  3. Other conventions for \(n_o\) and \(n_{\infty }\) are in use. In fact, even demanding that \(n_o^2 = n_{\infty }^2 = 0\) and \(n_o \cdot n_{\infty } = -1,\) leaves a degree of freedom \(\alpha \) resulting in \(n_o = \tfrac{1}{2} \alpha ({\textbf{e}}_{-} - {\textbf{e}}_{+})\) and \(n_{\infty } = \alpha ^{-1} ( {\textbf{e}}_{-} + {\textbf{e}}_{+})\) [20].

  4. Note that this embedding is dual to the customary one used in CGA, where hyperspheres are instead represented by \((n-1)\)-vectors [11].

  5. For 2k-reflections with \(2k < 6\) this argument suffices; for a general proof see Sect. 5.

  6. Typically the two parameter \({{\,\textrm{arctan2}\,}}(y,x)\) function is invoked to maintain \(2\pi \) resolution, as it does all the bookkeeping needed to determine the correct quadrant. However, all such manual bookkeeping can be avoided by using Eq. (7).

  7. Note that it is important not to take away from Example 6.4 that the \(\lambda _i \in {\mathbb {C}}\) are either real or strictly imaginary: this is merely because \(B\cdot B= 0\) in Eq. (25).

  8. To convince oneself of this, consider e.g. \(B= W_1 = b_1 + b_2 + b_3,\) such that \(W_2 = b_1 b_2 + b_1 b_3 + b_2 b_3\) and \(W_{3} = b_1 b_2 b_3.\) We find that \(b_1 \wedge W_1 = b_1 b_2 + b_1 b_3\) and \(b_1 \cdot W_{3} = \lambda _1 b_2 b_3.\) Plugging this into Eq. (28), we obtain \(W_2.\)

  9. The commutator- and outer-product of a vector with a \((2m+1)\)-vector are equivalent, see e.g. [17, Chapter 1.3].

References

  1. Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann.Math. 48(3), 568–640 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourbaki, N.: Algebra I. Springer, Berlin (1989)

    MATH  Google Scholar 

  3. Chasles, M.: Note sur les propriétés générales du systém de deux corps semblables entr’eux. Bulletin des Sciences Mathématiques, Astronomiques, Physiques et Chemiques 14, 321–326 (1830)

    Google Scholar 

  4. Chasles, M.: Aperçu historique sur l’origine et le développement des méthodes en géométrie, particulièrement de celles qui se rapportent á la géométrie moderne ; suivi d’un Mémoire de géométrie sur deux principes généraux de la science, la dualité et l’homographie. Gauthier-Villars, Paris (1875). http://catalogue.bnf.fr/ark:/12148/cb30226316s

  5. De Keninck, S., Roelfs, M.: Normalization, square roots, and the exponential and logarithmic maps in geometric algebras of less than 6D. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8639

    Article  Google Scholar 

  6. Dirac, P.A.M.: Projective geometry, origin of quantum equations (1972). Audio recording made by John B. Hart at Boston University

  7. Doran, C., Hestenes, D., Sommen, F., Van Acker, N.: Lie groups as spin groups. J. Math. Phys. 34(8), 3642–3669 (1993). https://doi.org/10.1063/1.530050

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511807497

    Book  MATH  Google Scholar 

  9. Dorst, L.: The Inner Products of Geometric Algebra, pp. 35–46. Birkhäuser Boston, Boston (2002). https://doi.org/10.1007/978-1-4612-0089-5_2

    Book  MATH  Google Scholar 

  10. Dorst, L.: A guided tour to the plane-based geometric algebra pga (2020). https://bivector.net/PGA4CS.pdf

  11. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco (2009)

    Google Scholar 

  12. Dorst, L., Valkenburg, R.: Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition, Guide to Geometric Algebra in Practice, pp. 81–104 (2011). https://doi.org/10.1007/978-0-85729-811-9_5

  13. Goldstein, H., Poole, C.P., Safko, J.: Classical Mechanics, 3rd edn. Pearson, London (2002)

    MATH  Google Scholar 

  14. Gunn, C.: Geometry, kinematics, and rigid body mechanics in Cayley–Klein geometries. Ph.D. thesis (2011). https://doi.org/10.14279/depositonce-3058

  15. Gunn, C.G., De Keninck, S.: Geometric algebra and computer graphics. In: ACM SIGGRAPH 2019 Courses, SIGGRAPH ’19. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3305366.3328099

  16. Hall, B.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in Mathematics, Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  17. Hestenes, D.: Space-time Algebra, 2nd edn. Birkhäuser/Springer International Publishing, Cham/Switzerland (2015). https://doi.org/10.1007/978-3-319-18413-5

  18. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. D. Reidel Publishing Company, Dordrecht; Boston; Lancaster; Tokyo; (1984). ISBN: 978-90-277-2561-5

  19. Hile, G.N., Lounesto, P.: Matrix representations of Clifford algebras. Linear Algebra Appl. 128, 51–63 (1990). https://doi.org/10.1016/0024-3795(90)90282-H

    Article  MathSciNet  MATH  Google Scholar 

  20. Mir, G., Saint-Jean, C., Berthier, M.: Conformal geometry for viewpoint change representation. Adv. Appl. Clifford Algebras (2014). https://doi.org/10.1007/s00006-013-0431-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Mozzi, G.: Discorso matematico sopra il rotamento momentaneo dei corpi. Stamperia di Donato Campo (1763). https://books.google.nl/books?id=VN2fmxcVJpUC

  22. Polchinski, J.: String Theory. Vol. 2: Superstring Theory and Beyond. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511618123

  23. Porteous, I.R.: Topological Geometry. Cambridge University Press, Cambridge (1969)

    MATH  Google Scholar 

  24. Riesz, M.: Clifford Numbers and Spinors (Chapters I–IV), pp. 1–196. Springer Netherlands, Dordrecht (1993). https://doi.org/10.1007/978-94-017-1047-3_1

  25. Roelfs, M.: Geometric invariant decomposition of \(\text{ SU }( {3})\). Adv. Appl. Clifford Algebras 33(1), 5 (2022). https://doi.org/10.1007/s00006-022-01252-w

    Article  MathSciNet  MATH  Google Scholar 

  26. Selig, J.M.: Clifford algebra of points, lines and planes. Robotica 18, 545–556 (2000)

    Article  Google Scholar 

  27. Selig, J.M.: Lie Groups and Lie Algebras in Robotics, pp. 101–125. Springer Netherlands, Dordrecht (2006). https://doi.org/10.1007/1-4020-2307-3_5

  28. Vaz, J., Jr., da Rocha, R.: An introduction to Clifford Algebras and Spinors. OUP, Oxford (2016). https://doi.org/10.1093/acprof:oso/9780198782926.001.0001

    Book  MATH  Google Scholar 

  29. Weinberg, S.: The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  30. Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40(1), 149–204 (1939). https://doi.org/10.2307/1968551

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ir. Leo Dorst for invaluable discussions about this research. The research of M. R. was supported by KU Leuven IF project C14/16/067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Roelfs.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (png 1037 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roelfs, M., De Keninck, S. Graded Symmetry Groups: Plane and Simple. Adv. Appl. Clifford Algebras 33, 30 (2023). https://doi.org/10.1007/s00006-023-01269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01269-9

Keywords

Navigation