Skip to main content
Log in

Hyperquaternion Conformal Groups

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The paper gives a new representation of conformal groups in n dimensions in terms of hyperquaternions defined as tensor products of quaternion algebras (or a subalgebra thereof). Being Clifford algebras, hyperquaternions provide a good representation of pseudo-orthogonal groups such as \(O(p+1,q+1)\) isomorphic to the nD conformal group with \(n=p+q.\) The representation yields simple expressions of the generators, independently of matrices or operators. The canonical decomposition and the invariants are discussed. As application, the 4D relativistic conformal group is detailed together with a worked example. Finally, the formalism is compared to the operator representation. Potential uses include in particular, conformal geometry, computer graphics and conformal field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Anglès, P.: Conformal Groups in Geometry and Spin Structures. Birkhäuser, Boston (2008)

    Book  Google Scholar 

  3. Bincer, A.M.: Lie Groups and Lie Algebras. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  4. Blumenhagen, R., Plauschinn, E.: Introduction to Conformal Field Theories: With Applications to String Theories: Lecture Notes on Physics, Vol. 779. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Casanova, G.: L’algèbre vectorielle. PUF, Paris (1976)

    Google Scholar 

  6. Clifford, W.K.: Applications of Grassmann extensive algebra. Am. J. Math. 1, 266–276 (1878)

    MathSciNet  Google Scholar 

  7. Girard, P.R.: Algèbre de Clifford et Physique Relativiste. PPUR, Lausanne (2004)

    MATH  Google Scholar 

  8. Girard, P.R.: Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  9. Girard, P.R., Clarysse, P., Pujol, R., Wang, L., Delachartre, P.: Differential geometry revisited by biquaternion Clifford algebra. In: Boissonnat, J.-D. (ed.) Curves and Surfaces. Springer, Berlin (2015)

    Google Scholar 

  10. Girard, P.R., Clarysse, P., Pujol, R., Goutte, R., Delachartre, P.: Hyperquaternions: a new tool for physics. Adv. Appl. Clifford Algebr. 28, 68 (2018). https://doi.org/10.1007/s00006-018-0881-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Girard, P.R., Clarysse, P., Pujol, R., Goutte, R., Delachartre, P.: Hyperquaternions: an efficient mathematical formalism for geometry. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information 2019: Lecture Notes in Computer Science, Vol. 11712, pp. 116–125. Springer, Cham (2019)

    Google Scholar 

  12. Girard, P.R., Clarysse, P., Pujol, R., Goutte, R., Delachartre, P.: Dual hyperquaternion Poincaré groups. Adv. Appl. Clifford Algebr. 31, 15 (2021a). https://doi.org/10.1007/s00006-021-01120-z

    Article  MATH  Google Scholar 

  13. Girard, P.R., Clarysse, P., Pujol, R., Goutte R., Delachartre, P.: DUAL HYPERQUATERNION POINCARE GROUPS.nb. Mathematica notebook. Academic Articles and Supplements. http://www.notebookarchive.org/2021-03-4mrwcdg/ (2021b)

  14. Haantjes, J.: Conformal representations of an \(n\)-dimensional euclidean space with a non-definite fundamental form on itself. Proc. Ned. Akad. Wet. (Math). 40, 700–705 (1937)

    MATH  Google Scholar 

  15. Helmstetter, J.: Conformal groups and Vahlen matrices. Adv. Appl. Clifford Algebr. 27, 33 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kastrup, H.A.: On the advancements of conformal transformations and their associated symmetries in geometry and theoretical physics. Ann. Phys. (Berlin) 17, 631–690 (2008)

    Article  ADS  Google Scholar 

  17. Lasenby, J., et al.: Calculating the rotor between conformal objects. Adv. Appl. Clifford Algebr. 29, 102 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lipschitz, R.: Principes d’un calcul algébrique qui contient comme espèces particulières le calcul des quantitiés imaginaires et des quaternions. C. R. Acad. Sci. Paris 91, 619–621 (1880)

    MATH  Google Scholar 

  19. Moore, C.L.E.: Rotations in hyperspace. Proc. Am. Acad. Arts Sci. 53(8), 651–694 (1918)

    Article  Google Scholar 

  20. Moore, C.L.E.: Hyperquaternions. J. Math. Phys. 1, 63–77 (1922)

    Article  Google Scholar 

  21. Penrose, R.: Twistor algebra. J. Math. Phys. 8(2), 345 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  22. Porteous, I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  23. Vince, J.: Geometric Algebra for Computer Graphics. Springer, London (2008)

    Book  Google Scholar 

  24. Vince, J.: Quaternions for Computer Graphics. Springer, London (2011)

    Book  Google Scholar 

  25. Ward, R.S., Wells, R.O.: Twistor Geometry and Field Theory. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) and was performed within the framework of the LABEX CELYA (ANR-10-LABX-0060) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The authors gratefully acknowledge the comments of the reviewers which have greatly improved the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick R. Girard.

Additional information

Communicated by Eckhard Hitzer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the ENGAGE 2020 Topical Collection on Geometric Algebra for Computing, Graphics and Engineering edited by Werner Benger, Dietmar Hildenbrand, Eckhard Hitzer, and George Papagiannakis.

Appendices

Appendix A. Lie Algebra of the nD-Conformal Group

Consider an nD space embedded in an \(n+2\) hyperquaternion algebra with the generators \(e_{0},e_{1},\ldots ,e_{n},e_{n+1}.\) The Lie generators of the rotations, translations, transversions and dilations of the restricted conformal group are respectively

$$\begin{aligned} M_{ij}= & {} \frac{1}{2}e_{i}e_{j} \quad \left( 1\le i,j\le n,i\ne j\right) , \end{aligned}$$
(A.1)
$$\begin{aligned} P_{i}= & {} \left( \frac{e_{0}+e_{n+1}}{2}\right) e_{i},\quad \text { } K_{i}=\left( \frac{e_{n+1}-e_{0}}{2}\right) e_{i}, \end{aligned}$$
(A.2)
$$\begin{aligned} D= & {} \frac{e_{0}e_{n+1}}{2}. \end{aligned}$$
(A.3)

One derives easily the following Lie commutators \(\left[ A,B\right] =AB-BA,\) with \(\eta _{ij}=\left( e_{i}e_{j}+e_{j}e_{i}\right) /2.\)

$$\begin{aligned} \left[ M_{ij},M_{kl}\right]= & {} \eta _{jk}\text { }M_{il}+\eta _{il}\text { } M_{jk}-\eta _{jl}\text { }M_{ik}-\eta _{ik}\text { }M_{jl}, \end{aligned}$$
(A.4)
$$\begin{aligned} \left[ M_{ij},P_{k}\right]= & {} \eta _{jk}P_{i}-\eta _{ik}\text { }P_{j},\quad \left[ M_{ij},K_{k}\right] =\eta _{jk}K_{i}-\eta _{ik}\text { }K_{j}, \end{aligned}$$
(A.5)
$$\begin{aligned} \left[ M_{ij},D\right]= & {} \left[ P_{i},P_{j}\right] =\left[ K_{i},K_{j} \right] =0, \end{aligned}$$
(A.6)
$$\begin{aligned} \left[ K_{i},P_{j}\right]= & {} 2\eta _{ij}D+M_{ij},\quad \left[ D,P_{i}\right] =-P_{i},\text { }\left[ D,K_{i}\right] =K_{i}. \end{aligned}$$
(A.7)

Appendix B. Multivector structure of \({\mathbb {H}}\otimes {\mathbb {H}}\otimes {\mathbb {H}}\)

A general hyperquaternion A is a set of 64 terms which can be grouped into a set of 16 quaternions \(\left[ q_{i}\right] =a_{i}+b_{i}l+c_{i}m+d_{i}n\) with respect to the sets ijk/IJK/lmn

$$\begin{aligned} A= & {} \left[ q_{1}\right] +I\left[ q_{2}\right] +J\left[ q_{3}\right] +K\left[ q_{4}\right] \nonumber \\&+ i\left[ q_{5}\right] +iI\left[ q_{6}\right] +iJ\left[ q_{7}\right] +iK \left[ q_{8}\right] \nonumber \\&+ j\left[ q_{9}\right] +jI\left[ q_{10}\right] +jJ\left[ q_{11}\right] +jK \left[ q_{12}\right] \nonumber \\&+ k\left[ q_{13}\right] +kI\left[ q_{14}\right] +kJ\left[ q_{15}\right] +kK \left[ q_{16}\right] \end{aligned}$$
(B.1)

yielding a multiplication table which can be implemented (algebraically or numerically) on Mathematica using its quaternion product \(\left[ q_{i}\right] **\left[ q_{j}\right] .\) The complete multivector structure is given below, where \(e_{0123}=e_{0}e_{1}e_{2}e_{3},\) etc..

$$\begin{aligned} \left[ \begin{array}{llll} 1 &{} l=e_{34} &{} m=e_{42} &{} n=e_{23} \\ I=e_{1234} &{} I l=e_{21} &{} I m=e_{31} &{} I n=e_{41} \\ J=e_{2034} &{} J l=e_{02} &{} J m=e_{03} &{} J n=e_{04} \\ K=e_{10} &{} Kl=e_{1034} &{} Km=e_{0124} &{} Kn=e_{1023} \\ i=e_{012345} &{} il=e_{1025} &{} im=e_{1035} &{} in=e_{1045} \\ iI=e_{50} &{} iI l=e_{3045} &{} iI m=e_{4025} &{} iI n=e_{2035} \\ iJ=e_{51} &{} iJ l=e_{3145} &{} iJ m=e_{4125} &{} iJ n=e_{2135} \\ iK=e_{2345} &{} iKl=e_{52} &{} iKm=e_{53} &{} iKn=e_{54} \\ j=e_{5} &{} jl=e_{345} &{} jm=e_{542} &{} jn=e_{235} \\ jI=e_{12345} &{} jI l=e_{215} &{} jI m=e_{531} &{} jI n=e_{541} \\ jJ=e_{32450} &{} jJ l=e_{025} &{} jJ m=e_{035} &{} jJ n=e_{045} \\ jK=e_{105} &{} jKl=e_{10345} &{} jKm=e_{01245} &{} jKn=e_{10235} \\ k=e_{10234} &{} kl=e_{012} &{} km=e_{013} &{} kn=e_{014} \\ kI=e_{0} &{} kI l=e_{034} &{} kI m=e_{204} &{} kI n=e_{023} \\ kJ=e_{1} &{} kJ l=e_{134} &{} kJ m=e_{214} &{} kJ n=e_{123} \\ kK=e_{324} &{} kKl=e_{2} &{} kKm=e_{3} &{} kKn=e_{4} \end{array} \right] \end{aligned}$$
(B.2)

A Mathematica notebook, concerning \({\mathbb {H}}\otimes {\mathbb {H}}\otimes {\mathbb {C}}\) is provided in [13].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, P.R., Clarysse, P., Pujol, R. et al. Hyperquaternion Conformal Groups. Adv. Appl. Clifford Algebras 31, 56 (2021). https://doi.org/10.1007/s00006-021-01159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01159-y

Keywords

Mathematics Subject Classification

Navigation