Skip to main content
Log in

Dual Hyperquaternion Poincaré Groups

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

A new representation of the Poincaré groups in n dimensions via dual hyperquaternions is developed, hyperquaternions being defined as a tensor product of quaternion algebras (or a subalgebra thereof). This formalism yields a uniquely defined product and simple expressions of the Poincaré generators, with immediate physical meaning, revealing the algebraic structure independently of matrices or operators. An extended multivector calculus is introduced (allowing a possible sign change of the metric or of the exterior product). The Poincaré groups are formulated as a dual extension of hyperquaternion pseudo-orthogonal groups. The canonical decomposition and the invariants are discussed. As concrete example, the 4D Poincaré group is examined together with a numerical application. Finally, the hyperquaternion representation is compared to the quantum mechanical one. Potential applications include in particular, moving reference frames and computer graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Casanova, G.: L’algèbre vectorielle. PUF, Paris (1976)

    Google Scholar 

  3. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1, 266–276 (1878)

    MathSciNet  Google Scholar 

  4. Cnops, J.: An Introduction to Dirac Operators on Manifolds. Birkhäuser, Basel (2002)

    Book  Google Scholar 

  5. Costa, C., Tenser, M.R., Amorim, R.G.G., Fernandes, M.C.B., Santana, A.E., Vianna, J.D.M.: Symplectic field theories: scalar and spinor representations. Adv. Appl. Clifford Algebras 28, 27 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dray, T., Manogue, C.A.: The Geometry of Octonions. World Scientific, Singapore (2015)

    Book  Google Scholar 

  7. Elstrodt, J., Grunewald, F., Mennicke, J.: Kloosterman sums for Clifford Algebras and a lower bound for the positive eigenvalues of the Laplacian for congruence subgroups acting on hyperbolic spaces. Invent. Math. 101, 641–685 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Elstrodt, J., Grunewald, F., Mennicke, J.: Vahlen’s group of Clifford matrices and spin-groups. Math. Z. 196, 369–390 (1987)

    Article  MathSciNet  Google Scholar 

  9. Girard, P.R., Clarysse, P., Pujol, R., Goutte, R., Delachartre, P.: Hyperquaternions: An efficient mathematical formalism for geometry. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information 2019. Lecture Notes in Computer Science, vol. 11712, pp. 116–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7-13

  10. Girard, P.R., Clarysse, P., Pujol, R., Goutte, R., Delachartre, P.: Hyperquaternions: a new tool for physics. Adv. Appl. Clifford Algebras 28, 68 (2018)

    Article  MathSciNet  Google Scholar 

  11. Girard, P.R., Clarysse, P., Pujol, R., Wang, L., Delachartre, P.: Differential geometry revisited by biquaternion Clifford algebra. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces. Springer, Berlin (2015)

    Google Scholar 

  12. Girard, P.R.: Quaternions, Clifford Algebras and Relativistic Physics. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  13. Girard, P.R.: Algèbre de Clifford et Physique relativiste. PPUR, Lausanne (2004)

    MATH  Google Scholar 

  14. Girard, P.R.: Einstein’s equations and Clifford algebra. Adv. Appl. Clifford Algebras 9(2), 225–230 (1999)

    Article  MathSciNet  Google Scholar 

  15. Girard, P.R.: Histoire de la Relativité Générale d’Einstein: Développement Conceptuel de la Théorie. University of Wisconsin-Madison USA, Sciences de l’Homme et Société (1981). https://hal.archives-ouvertes.fr/tel-02321688. Revised 2008

  16. Goodman, R., Wallach, N.R.: Symmetry, Representations and Invariants. Springer, New York (2009)

    Book  Google Scholar 

  17. Gording, B., Schmidt-May, A.: The unified standard model. Adv. Appl. Clifford Algebras 30, 55 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hladik, J., Hladik, P.-E.: Quaternions réels, duaux et complexes. Ellipses, Paris (2016)

    Google Scholar 

  19. Karakus, S.O.: Screw theory in Lorentzian space. Adv. Appl. Clifford Algebras 29, 3 (2019)

    Article  MathSciNet  Google Scholar 

  20. Lipschitz, R.: Principes d’un calcul algébrique qui contient comme espèces particulières le calcul des quantitiés imaginaires et des quaternions. C.R. Acad. Sci. Paris 91, 619–621, 660–664 (1880)

  21. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  22. Moore, C.L.E.: Hyperquaternions. J. Math. Phys. 1, 63–77 (1922)

    Article  Google Scholar 

  23. Moore, C.L.E.: Rotations in hyperspace. Proc. Am. Acad. Arts Sci. 53(8), 651–694 (1918)

    Article  Google Scholar 

  24. Ohnuki, Y.: Unitary Representations of the Poincaré Group and Relativistic Wave Equations. World Scientific, Singapore (1988)

    Book  Google Scholar 

  25. Porteous, I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  26. Saar, R., Groote, S.: Mass, zero nass and ... nophysics. Adv. Appl. Clifford Algebras 27, 2739–2768 (2017)

  27. Traubenberg, M.R.: Clifford algebras in physics. Adv. Appl. Clifford Algebras 19, 869–908 (2009)

    Article  MathSciNet  Google Scholar 

  28. Wang, X., Zhu, H.: On the comparisons of unit dual quaternion and homogeneous transformation matrix. Adv. Appl. Clifford Algebras 24, 213–229 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) and was performed within the framework of the LABEX CELYA (ANR-10-LABX-0060) of Université de Lyon, within the program“Investissements d’Avenir”(ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The authors gratefully acknowledge the comments of the journal referees which have greatly improved the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick R. Girard.

Additional information

Communicated by Swanhild Bernstein

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Orthogonal Plane Symmetry

For the convenience of the reader, we derive here the formula of Eq. (4.3) [12, 13]. The orthogonal symmetric \(x^{\prime }\) of a vector x with respect to a plane orthogonal to a vector u satisfies the equations

$$\begin{aligned} x^{\prime }=x+ku,\quad u\cdot \left( \frac{x^{\prime }+x}{2}\right) =0 \left( k\in {\mathbb {R}}\right) . \end{aligned}$$
(A.1)

Hence,

$$\begin{aligned} u\cdot \left( x+\frac{ku}{2}\right)= & {} 0\Rightarrow k=\frac{-2u\cdot x}{u\cdot u}, \end{aligned}$$
(A.2)
$$\begin{aligned} x^{\prime }= & {} x-\frac{2\left( u\cdot x\right) }{u\cdot u}=x-\frac{\left( ux+xu\right) u}{uu}=\frac{uxu}{uu_{c}}. \end{aligned}$$
(A.3)

Appendix B: Lie Algebra of the nD-Poincaré Group

We first give the Lie algebra of the restricted Poincaré group \(P_{+}^{\uparrow }\) and then of the full group P.

1.1 B.1. Restricted Group

Consider an nD space imbedded in an \(n+1\) hyperquaternion algebra having the generators \(e_{1},e_{2},\ldots , e_{n},e_{n+1}\). The Lie generators of the rotations are

$$\begin{aligned} M_{ij}=\frac{1}{2}e_{i}e_{j} \quad \left( 1\le i,j\le n,\, i < j\right) . \end{aligned}$$
(B.1)

The Lie commutator being defined as \(\left[ A,B\right] =AB-BA,\) one obtains for \(i\ne j=r\ne s\) and

$$\begin{aligned} \left[ M_{ij},M_{rs}\right]= & {} \frac{1}{4}\left( e_{i}e_{j} e_{r}e_{s}-e_{r}e_{s}e_{i}e_{j}\right) \nonumber \\= & {} \frac{1}{4}\left( e_{i}e_{j} e_{r}e_{s}+e_{i}e_{r}e_{j}e_{s}\right) \nonumber \\= & {} \frac{1}{2}\eta _{jr}e_{i}e_{s}=\eta _{jr}M_{is} \end{aligned}$$
(B.2)

with \(\eta _{jr}=\left( e_{j}e_{r}+e_{r}e_{j}\right) /2.\) Similarly, one has

$$\begin{aligned} \left[ M_{ij},M_{rs}\right]= & {} \eta _{is}M_{jr}\quad \left( j\ne i=s\ne r\right) , \end{aligned}$$
(B.3)
$$\begin{aligned} \left[ M_{ij},M_{rs}\right]= & {} -\eta _{js}M_{ir}\quad \left( i\ne j=s\ne r\right) ,\end{aligned}$$
(B.4)
$$\begin{aligned} \left[ M_{ij},M_{rs}\right]= & {} -\eta _{ir}M_{js}\quad \left( j\ne i=r\ne s\right) ; \end{aligned}$$
(B.5)

combining all possible cases for the rotations one gets

$$\begin{aligned} \left[ M_{ij},M_{rs}\right] =\eta _{jr}M_{is}+\eta _{is}M_{jr}-\eta _{js}M_{ir}-\eta _{ir}M_{js}. \end{aligned}$$
(B.6)

For the nD-translations, the generators are

$$\begin{aligned} M_{\left( n+1\right) i}=\frac{1}{2}\varepsilon e_{n+1}e_{i} \quad \left( 1\le i\le n,\,\varepsilon ^{2}=0,\,e_{n+1}^{2}=-1\right) \end{aligned}$$
(B.7)

(for \(e_{n+1}^{2}=1,\) the one takes \(M_{i\left( n+1\right) }=-M_{\left( n+1\right) i}\)). One has the relations

$$\begin{aligned} \left[ M_{\left( n+1\right) i},M_{\left( n+1\right) j}\right] =0 \quad \left( \forall i,j\right) \end{aligned}$$
(B.8)

and for \(i\ne j=k\)

$$\begin{aligned} \left[ M_{ij},M_{\left( n+1\right) k}\right]= & {} \frac{\varepsilon }{4}\left( e_{i}e_{j}e_{\left( n+1\right) }e_{k}-e_{\left( n+1\right) }e_{k}e_{i}e_{j}\right) \nonumber \\= & {} \frac{\varepsilon e_{n+1}}{4}\left( e_{i}e_{j}e_{k}+e_{k}e_{j}e_{i}\right) \nonumber \\= & {} \frac{\varepsilon e_{n+1}}{2}\eta _{jk}e_{i}=\eta _{jk}M_{\left( n+1\right) i}; \end{aligned}$$
(B.9)

similarly, for \(k=i\ne j\), one has      

$$\begin{aligned} \left[ M_{ij},M_{\left( n+1\right) k}\right] =-\eta _{ik}M_{\left( n+1\right) j}. \end{aligned}$$
(B.10)

Combining the two cases above, one obtains for the translations

$$\begin{aligned} \left[ M_{ij},M_{\left( n+1\right) k}\right] =\eta _{jk}M_{\left( n+1\right) i}-\eta _{ik}\text { }M_{\left( n+1\right) j.} \end{aligned}$$
(B.11)

Projecting the plane \(M_{\left( n+1\right) i}\) on the space \(V_{n}\) one obtains, for \(e_{n+1}^{2}=-1,\) the vector

$$\begin{aligned} P_{i}=e_{n+1}M_{\left( n+1\right) i}=\frac{\varepsilon }{2} e_{n+1}e_{n+1}e_{i}=-\frac{\varepsilon }{2}e_{i}. \end{aligned}$$
(B.12)

For \(e_{n+1}^{2}=+1,\) one has

$$\begin{aligned} P_{i}=e_{n+1}M_{i\left( n+1\right) }=\frac{\varepsilon }{2} e_{n+1}e_{i}e_{n+1}=-\frac{\varepsilon }{2}e_{i}. \end{aligned}$$
(B.13)

The complete Lie algebra of the restricted Poincaré group can thus be expressed in the standard abstract form

$$\begin{aligned} \left[ M_{ij},M_{rs}\right]= & {} \eta _{jr}M_{is}+\eta _{is}M_{jr}-\eta _{js}M_{ir}-\eta _{ir}M_{js}, \end{aligned}$$
(B.14)
$$\begin{aligned} \left[ P_{i},P_{j}\right]= & {} 0 ,\end{aligned}$$
(B.15)
$$\begin{aligned} \left[ M_{ij},P_{k}\right]= & {} \eta _{jk}P_{i}-\eta _{ik}P_{j}. \end{aligned}$$
(B.16)

1.2 B.2. Full Group

The other components of the full Poincaré group being obtained from the restricted one through multiplication by a vector \(e_{k}\), one has besides the above relations the following ones

$$\begin{aligned} \left[ M_{ij},e_{k}\right]= & {} \eta _{jk}e_{i}-\eta _{ik}e_{j}, \end{aligned}$$
(B.17)
$$\begin{aligned} \left[ M_{\left( n+1\right) i},e_{k}\right]= & {} \eta _{ik}\left( \varepsilon e_{n+1}\right) . \end{aligned}$$
(B.18)

Appendix C: Multivector Structure of \(\mathbb {H}\otimes \mathbb {H}\otimes {\mathbb {C}}\)

The hyperquaternion algebra \(\mathbb {H}\otimes \mathbb {H}\otimes {\mathbb {C}}\simeq C_5(2,3)\) can be viewed as an eight-dimensional vector space over the (real) quaternion algebra with the basis \(\{1,l,m,n\}\). Thus, any hyperquaternion A can be written as a linear combination of eight linearly independent basis elements (1, IJKiiIiJiK) with quaternionic coefficients \(\left[ q_{s}\right] =a_{s}+b_{s}l+c_{s}m+d_{s}n\) \((1\le s \le 8)\) as

$$\begin{aligned} A =\left[ q_{1}\right] +I\left[ q_{2}\right] +J\left[ q_{3}\right] +K\left[ q_{4}\right] +i\left[ q_{5}\right] +iI\left[ q_{6}\right] +iJ\left[ q_{7}\right] +iK \left[ q_{8}\right] .\qquad \end{aligned}$$
(C.1)

The multivector structure of A can be derived from Eq. (5.1) as follows:

$$\begin{aligned} I=e_{0123},\, J=e_{1234},\, K=e_{04},\, l=e_{23}, \, m=-e_{13}, \, n=e_{12},\, i=-e_{01234}\nonumber \\ \end{aligned}$$
(C.2)

where \(e_{0123}=e_{0}e_{1}e_{2}e_{3},\) etc. Then, the product of two elements AB can be implemented (algebraically or numerically) in Mathematica with its quaternion product, e.g., \(\left[ q_{i}\right] **\left[ q_{j}\right] .\) For the convenience of the reader, the complete multivector structure is given in the table below:

$$\begin{aligned} \left[ \begin{array}{llll} 1 &{} l=e_{2}e_{3} &{} m=e_{3}e_{1} &{} n=e_{1}e_{2}\\ I=e_{0}e_{1}e_{2}e_{3} &{} Il=e_{1}e_{0} &{} Im=e_{2}e_{0} &{} In=e_{3}e_{0}\\ J=e_{1}e_{4}e_{2}e_{3} &{} Jl=e_{4}e_{1} &{} Jm=e_{4}e_{2} &{} Jn=e_{4}e_{3}\\ K=e_{0}e_{4} &{} Kl=e_{0}e_{4}e_{2}e_{3} &{} Km=e_{4}e_{0}e_{1}e_{3} &{} Kn=e_{0}e_{4}e_{1}e_{2}\\ i=e_{0}e_{4}e_{1}e_{2}e_{3} &{} il=e_{4}e_{0}e_{1} &{} im=e_{4}e_{0}e_{2} &{} in=e_{4}e_{0}e_{3}\\ iI=e_{4} &{} iIl=e_{4}e_{2}e_{3} &{} iIm=e_{1}e_{4}e_{3} &{} iIn=e_{4}e_{1}e_{2}\\ iJ=e_{0} &{} iJl=e_{0}e_{2}e_{3} &{} iJm=e_{1}e_{0}e_{3} &{} iJn=e_{0}e_{1}e_{2}\\ iK=e_{1}e_{2}e_{3} &{} iKl=e_{1} &{} iKm=e_{2} &{} iKn=e_{3} \end{array}\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, P.R., Clarysse, P., Pujol, R. et al. Dual Hyperquaternion Poincaré Groups. Adv. Appl. Clifford Algebras 31, 15 (2021). https://doi.org/10.1007/s00006-021-01120-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-021-01120-z

Keywords

Mathematics Subject Classification

Navigation