Skip to main content
Log in

Complexifying the Spacetime Algebra by Means of an Extra Timelike Dimension: Pin, Spin and Algebraic Spinors

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Because of the isomorphism \(C \ell _{1,3}({\mathbb {C}})\cong C \ell _{2,3}({\mathbb {R}})\), it is possible to complexify the spacetime Clifford algebra \(C \ell _{1,3}({\mathbb {R}})\) by adding one additional timelike dimension to the Minkowski spacetime. In a recent work we showed how this treatment provide a particular interpretation of Dirac particles and antiparticles in terms of the new temporal dimension. In this article we thoroughly study the structure of the real Clifford algebra \(C \ell _{2,3}({\mathbb {R}})\) paying special attention to the isomorphism \(C \ell _{1,3}({\mathbb {C}})\cong C \ell _{2,3}({\mathbb {R}})\) and the embedding \(C \ell _{1,3}({\mathbb {R}})\subseteq C \ell _{2,3}({\mathbb {R}})\). On the first half of this article we analyze the Pin and Spin groups and construct an injective mapping \({\text {Pin}}(1,3)\hookrightarrow {\text {Spin}}(2,3)\), obtaining in particular elements in \({\text {Spin}}(2,3)\) that represent parity and time reversal. On the second half of this paper we study the spinor space of the algebra and prove that the usual structure of complex spinors in \(C \ell _{1,3}({\mathbb {C}})\) is reproduced by the Clifford conjugation inner product for real spinors in \(C \ell _{2,3}({\mathbb {R}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. see chapter 6 of [27] for terminology.

  2. The idempotent \(u_{1}\) appearing in [16] can only be constructed in the complex case: in the real spacetime algebra such an element does not exist.

  3. N.B.: Pronounced /gemil/ in international phonetic alphabet, which is close to the English pronunciation of the word “gaemil”. It is a symbol present in the culture of the Mapuche people, which is a native people from the region of Patagonia, in the south of Argentina and Chile. As I searched for a name for this shape this was the one I found more accurate.

  4. This can be seen easily because any element x in the Pin group is the product of a finite number of non-isotropic vectors. For a product of an even number of vectors \(\alpha (x)=x\) and for an odd number of vectors \(\alpha (x)=-x\).

  5. Because S is a minimal left ideal and \(SS=C \ell _{p,q}f{f}C \ell _{p,q}f\) is a left ideal contained in S, then \(SS=S\).

  6. For simple algebras, this is a consequence of the adjoint action of \({C \ell }_{p,q}^{*}\) being transitive on primitive idempotents, together with f and \(f^{\circ }\) being both primitive idempotents. In semisimple algebras the adjoint action has two orbits on primitive idempotents, and f and \(f^{\circ }\) belong to the same one. See Ref. [2] for a deeper analysis of idempotents on Clifford algebras.

  7. See Sect. 6.1 to see in which sense \(A^{i}_{j}\) are the components of A in the basis .

  8. In Appendix A.2 we write a very simple algorithm to find such an element in the Clifford standard basis.

References

  1. Abłamowicz, R., Fauser, B.: Mathematics of Clifford—a Maple package for Clifford and Graßmann algebras. Adv. Appl. Clifford Algebras 15(2), 157–181 (2005). https://doi.org/10.1007/s00006-005-0009-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Abłamowicz, R., Fauser, B., Podlaski, K., Rembieliński, J.: Idempotents of Clifford algebras. Czech J. Phys. 53(11), 949–954 (2003). https://doi.org/10.1023/B:CJOP.0000010517.40303.67

    Article  ADS  MathSciNet  Google Scholar 

  3. Abłamowicz, R., Lounesto, P.: On Clifford algebras of a bilinear form with an antisymmetric part. In Clifford Algebras with Numeric and Symbolic Computations, eds. R. Abłamowicz, P. Lounesto, and J. Parra, Birkhäuser, Boston (1996) 167–188. https://doi.org/10.1007/978-1-4615-8157-4_11

  4. Abłamowicz, R., Gonçalves, I., da Rocha, R.: Bilinear covariants and spinor fields duality in quantum Clifford algebras. J. Math. Phys. 55(10), 103501 (2014). https://doi.org/10.1063/1.4896395

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aldrovandi, R., Almeida, J.P.B., Mayor, C.S.O., Pereira, J.G.: de sitter relativity and quantum physics. AIP Conf. Proc. 962(1), 175–184 (2007). https://doi.org/10.1063/1.2827302

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Arcodía, M.R.A., Bellini, M.: Particle-antiparticle duality from an extra timelike dimension. Eur. Phys. J. C 79(9), 796 (2019). https://doi.org/10.1140/epjc/s10052-019-7311-5

    Article  ADS  Google Scholar 

  7. Bars, I.: Survey of two time physics. Class. Quant. Grav. 18, 3113–3130 (2001). https://doi.org/10.1088/0264-9381/18/16/303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Barut, A., Ziino, G.: On parity conservation and the question of the ’missing’ (right-handed) neutrino. Mod. Phys. Lett. A 8, 1011–1020 (1993). https://doi.org/10.1142/S021773239300249X

    Article  ADS  Google Scholar 

  9. Berg, M., DeWitt-Morette, C., Gwo, S., Kramer, E.: The Pin groups in physics: C, P, and T. Rev. Math. Phys. 13, 953–1034 (2001). https://doi.org/10.1142/S0129055X01000922

    Article  MathSciNet  MATH  Google Scholar 

  10. Crumeyrolle, A. (ed.): The Clifford groups, the twisted clifford groups and their fundamental subgroups. In: Orthogonal and Symplectic Clifford Algebras: Spinor Structures, pp. 58–67. Springer Netherlands, Dordrecht (1990). https://doi.org/10.1007/978-94-015-7877-6_4

  11. Fauser, B.: Clifford geometric parameterization of inequivalent vacua. Math. Methods Appl. Sci. 24(12), 885–912 (2001). https://doi.org/10.1002/mma.247. https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.247

  12. Gallier, J.: Clifford algebras, Clifford groups, and a generalization of the quaternions (2008)

  13. Henneaux, M., Teitelboim, C.: Asymptotically anti-de sitter spaces. Commun. Math. Phys. 98(3), 391–424 (1985). https://doi.org/10.1007/BF01205790

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hestenes, D.: Real spinor fields. J. Math. Phys. 8(4), 798–808 (1967). https://doi.org/10.1063/1.1705279

    Article  ADS  Google Scholar 

  15. Hestenes, D.: Local observables in the Dirac theory. J. Math. Phys. 14(7), 893–905 (1973). https://doi.org/10.1063/1.1666413

    Article  ADS  Google Scholar 

  16. Hestenes, D.: Observables, operators, and complex numbers in the Dirac theory. J. Math. Phys. 16(3), 556–572 (1975). https://doi.org/10.1063/1.522554

    Article  ADS  MathSciNet  Google Scholar 

  17. Hull, C., Townsend, P.: Unity of superstring dualities. Nucl. Phys. B 438(1), 109–137 (1995). https://doi.org/10.1016/0550-3213(94)00559-W. http://www.sciencedirect.com/science/article/pii/055032139400559W

  18. Kocinski, J.: A five-dimensional form of the Dirac equation. J. Phys. A Math. Gen. 32(23), 4257–4277 (1999). https://doi.org/10.1088/0305-4470/32/23/306

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Linch, W.D., Luty, M.A., Phillips, J.: Five-dimensional supergravity in \(\cal{N}=1\) superspace. Phys. Rev. D 68, 025008 (2003). https://doi.org/10.1103/PhysRevD.68.025008. https://link.aps.org/doi/10.1103/PhysRevD.68.025008

  20. Lounesto, P.: Clifford Algebras and Spinors. 2nd edn., Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511526022

  21. Ma, G.W., Guo, Z.K.: 5d Dirac equation in induced-matter theory. Int. J. Theor. Phys. 41(9), 1733–1743 (2002). https://doi.org/10.1023/A:1021063202077

    Article  MathSciNet  MATH  Google Scholar 

  22. Monakhov, V.: The five-dimensional Dirac equation in the theory of algebraic spinors. Bull. Russ. Acad. Sci. Phys. 81(10), 1219–1224 (2017). https://doi.org/10.3103/S1062873817100197

    Article  Google Scholar 

  23. Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511470912

    Book  Google Scholar 

  24. Ramond, P.: Field Theory: A Modern Primer. Frontiers in physics. Addison-Wesley Publishing Company, Advanced Book Program (2007). https://books.google.com.ar/books?id=mgVBjnLXT4cC

  25. da Rocha, R., Vaz Jayme, J.: Conformal structures and twistors in the paravector model of spacetime. Int. J. Geom. Methods Mod. Phys. 4, 547–576 (2008). https://doi.org/10.1142/S0219887807002193

    Article  MathSciNet  MATH  Google Scholar 

  26. Sánchez, P.A., Anabitarte, M., Bellini, M.: Dirac equation for massive neutrinos in a Schwarzschild–de sitter spacetime from a 5d vacuum. Phys. Lett. B 705(5), 535–538 (2011). https://doi.org/10.1016/j.physletb.2011.10.058. http://www.sciencedirect.com/science/article/pii/S0370269311013128

  27. Vaz, J., da Rocha, R.: An Introduction to Clifford Algebras and Spinors. Oxford University Press (2016). https://books.google.com.ar/books?id=VNMTDAAAQBAJ

  28. Wesson, P.: Space-Time-Matter: Modern Kaluza-Klein Theory. World Scientific (1999). https://books.google.com.ar/books?id=l6xmSWLQJqkC

  29. Wesson, P., Ponce de Leon, J., Liu, H., Mashhoon, B., Kalligas, D., Everitt, C., Billyard, A., Lim, P., Overduin, J.: A theory of space, time and matter. Int. J. Mod. Phys. A 11(18), 3247–3255 (1996). https://doi.org/10.1142/S0217751X96001553

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wesson, P.S.: Five-dimensional relativity and two times. Phys. Lett. B 538(1), 159–163 (2002). https://doi.org/10.1016/S0370-2693(02)01956-1. http://www.sciencedirect.com/science/article/pii/S0370269302019561

  31. Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40(1), 149–204 (1939). http://www.jstor.org/stable/1968551

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos R. A. Arcodía.

Additional information

Communicated by Roldão da Rocha

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Code for computations on the \({C \ell }_{2,3}({\mathbb {R}})\) using the Clifford package for Maple

Appendix A. Code for computations on the \({C \ell }_{2,3}({\mathbb {R}})\) using the Clifford package for Maple

In this appendix we use the Clifford package for Maple [1], developed by Abłamowicz and Fauser to perform some calculations. We are going to use the following preamble, which contains information about the Clifford algebra and define the idempotent f, for all the calculations:

$$\begin{aligned}&{\texttt {with(Clifford):with(LinearAlgebra):}}\\&{\texttt {clibasis:=cbasis(5);}}\\&{\texttt {B:=linalg[diag](1,-1,-1,-1,1);}}\\&{\texttt {f:=cmul(1/2*(1+e2we3we4),1/2*(1-e1we4we5));}} \end{aligned}$$

1.1 A.1. Computation of the \({\mathbb {K}}\)-basis for S

In order to compute the \({\mathbb {K}}\)-basis for S we use the command spinorKbasis. This command takes four inputs:

  1. 1.

    a real basis for the space S,

  2. 2.

    the idempotent f,

  3. 3.

    a list of elements from the standard basis of \({C \ell }_{p,q}\) that generate \({\mathbb {K}}\) as a real vector space.

  4. 4.

    the string “left” or “right” indicating if S is the left minimal ideal, \({C \ell }_{p,q}{f}\), or the right one, \(f{C \ell }_{p,q}\).

As a matter of fact spinorKbasis returns three elements, the \({\mathbb {K}}\)-basis for S is the first one. Let’s find all this objects needed as inputs using the Clifford package. To generate a real basis of S we are going to use the command minimalideal in the following way:

$$\begin{aligned} {\texttt {realbasisS:=minimalideal(clibasis,f,'left');}} \end{aligned}$$

Lastly, we define the set of generators of \({\mathbb {K}}\), and compute the \({\mathbb {K}}\)-basis for S:

$$\begin{aligned}&{\texttt {Kgenerators:=[Id,e1we2we3we4we5];}}\\&{\texttt {KbasisS:=spinorKbasis(realbasisS,f,Kgenerators,'left')[1];}} \end{aligned}$$

The basis obtained in this way, although rendering \(\gamma _{0}=-ie_{4}e_{0}\) diagonal, it is not the matrix for the Dirac representation. However, by the following reordering:

$$\begin{aligned} {\texttt {DiracKbasisS:=[KbasisS[1],KbasisS[3],KbasisS[2],KbasisS[4]];}} \end{aligned}$$

we obtain the basis in Eq. (58).

1.2 A.2. Finding the element s for the reversion inner product

The following algorithm finds the element s in Eq. (51), as long as it belongs in the standard basis, which is the case for the idempotent f in Eq. (53).

$$\begin{aligned}&{\texttt {l:=nops(clibasis): s:=0:}} \\&{\texttt {for i from 1 to l do}} \\&\quad \quad \quad \,{\texttt {if cmul(clibasis[i],reversion(f))-cmul(f,clibasis[i])=0 and s=0}} \\&\quad \quad \,\,\,\,\,\qquad {\texttt {then s:=clibasis[i];}} \\&\quad \quad \quad \,{\texttt {end if;}} \\&{\texttt {end do;}} \\&{\texttt {print(s);}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arcodía, M.R.A. Complexifying the Spacetime Algebra by Means of an Extra Timelike Dimension: Pin, Spin and Algebraic Spinors. Adv. Appl. Clifford Algebras 31, 17 (2021). https://doi.org/10.1007/s00006-020-01109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-020-01109-0

Navigation