Skip to main content
Log in

Construction of Special Solutions for the Maxwell Equations

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper, we consider homogeneous polynomial solutions for the classical Maxwell equations in a time-space domain with time variable \(t<t_0\), where \(t_0\) is an arbitrary constant. The technique is motivated by the study of the so-called generalized Maxwell operators, which are constructed as conformally invariant differential operators in the framework of Clifford analysis. We firstly show that solutions of the classical Maxwell equations are equivalent to null solutions of the generalized Maxwell operator, then a direct decomposition and a partially orthogonal polynomial basis for the space of homogeneous polynomial null solutions of the generalized Maxwell operator are provided. At the end, a basis of homogeneous polynomial solutions for the source-free Maxwell equations on a bounded time-space domain is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, L.C.: Special Functions of Mathematics for Engineers, 2nd edn. Oxford University Press, Oxford (1997)

    Book  Google Scholar 

  2. Bateman, H.: The transformation of the electrodynamical equations. Proc. Lond. Math. Soc. 8(Series 2), 223–262 (1909)

    MathSciNet  MATH  Google Scholar 

  3. Bock, S.: On Monogenic Series Expansions with Applications to Linear Elasticity, Adv. Appl. Clifford Algebras. Springer, Basel (2014). https://doi.org/10.1007/s00006-014-0490-0

    Article  MathSciNet  Google Scholar 

  4. Branson, T.: Group representations arising from Lorentz conformal geometry. J. Funct. Anal. 74, 199–291 (1987)

    Article  MathSciNet  Google Scholar 

  5. Branson, T., Ørsted, B.: Spontaneous generation of eigenvalues. J. Geom. Phys. 56, 2261–2278 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita–Schwinger type operators in Clifford analysis. J. Funct. Anal. 185(2), 425–455 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cunningham, E.: The principle of relativity in electrodynamics and an extension thereof. Proc. Lond. Math. Soc. s2–8(1), 77–98 (1910)

    Article  MathSciNet  Google Scholar 

  8. De Bie, H., Eelbode, D., Roels, M.: The higher spin Laplace operator. Potential Anal. 47(2), 123–149 (2017)

    Article  MathSciNet  Google Scholar 

  9. Ding, C., Bock, S., Gürlebeck, K.: Special bases for solutions of a generalized Maxwell system in 3-dimensional space. Math. Methods Appl. Sci. 41(13), 5308–5326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Severable Variables, Encyclopoedia of Mathematics and its Applications 81. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  11. Eelbode, D., Roels, M.: Generalised Maxwell equations in higher dimensions. Complex Anal. Oper. Theory 10(2), 267–293 (2016)

    Article  MathSciNet  Google Scholar 

  12. Eelbode, D., Souček, V.: Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Methods Appl. Sci. 33, 1558–1570 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Fegan, H.D.: Conformally invariant first order differential operators. Q. J. Math. 27, 513–538 (1976)

    Article  MathSciNet  Google Scholar 

  14. Fultion, T., Rohrlich, F., Witten, L.: Conformal invariance in physics. Rev. Mod. Phys. 34(3), 442–456 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  15. Gover, R.: Laplacian operators and Q-curvature on conformally Einstein manifolds. Math. Ann. 336, 311–334 (2006)

    Article  MathSciNet  Google Scholar 

  16. Gover, R., Peterson, L.: Conformally invariant powers of the Laplacian. Q-curvature, and tractor calculus. Commun. Math. Phys. 235(2), 339–378 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Graham, R.: Conformal powers of the Laplacian via stereographic projection. SIGMA Symmetry Integrability Geom. Methods Appl. 3, 121 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Graham, R., Jenne, R., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian, I: existence. J. Lond. Math. Soc. 46, 557–565 (1992)

    Article  MathSciNet  Google Scholar 

  19. Horváth, J.: Basic sets of polynomial solutions of partial differential equations. Proc. Am. Math. Soc. 9, 569–575 (1958)

    Article  MathSciNet  Google Scholar 

  20. Jackson, J.D.: Classical Electrodynamics, third edn. Wiley, New York (1998)

    MATH  Google Scholar 

  21. Jefimenko, O.D.: Solutions of Maxwell equations for electric and magnetic fields in arbitrary media. Am. J. Phys. 60(10), 899–902 (1992)

    Article  ADS  Google Scholar 

  22. Li, J., Ryan, J.: Some operators associated to Rarita–Schwinger type operators. Complex Var. Ellipt. Equ. 57(7–8), 885–902 (2012)

    Article  MathSciNet  Google Scholar 

  23. Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8, 535–564 (2002)

    Article  MathSciNet  Google Scholar 

  24. Meremianin, A.V.: Multipole expansions in four-dimensional hyperspherical harmonics. J. Phys. A: Math. Gen. 39(12), 3099–3112 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. Slovák, J.: Natural Operators on Conformal Manifolds, Habilitation thesis. Masaryk University, Brno (1993)

Download references

Acknowledgements

The authors are grateful to the anonymous referees for detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Ding.

Additional information

Dedicated to Sirkka-Liisa Eriksson on the occasion of her 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chao Ding gratefully acknowledges that this research is supported by Bauhaus-Postdoc-\(\text {Profil}^+\)-Scholarship 2018/19.

This article is part of the Topical Collection on FTHD 2018, edited by Sirkka-Liisa Eriksson, Yuri M. Grigoriev, Ville Turunen, Franciscus Sommen and Helmut Malonek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Bock, S. & Gürlebeck, K. Construction of Special Solutions for the Maxwell Equations. Adv. Appl. Clifford Algebras 29, 95 (2019). https://doi.org/10.1007/s00006-019-1013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-019-1013-9

Keywords

Mathematics Subject Classification

Navigation