Skip to main content
Log in

Existence and regularity of solutions to quasilinear systems of Maxwell type and Maxwell-Stokes type

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Solvability of nonlinear partial differential systems involving the operator curl depends on the nature of nonlinearity of the equations and the type of the boundary conditions, and very often depends also on the domain topology. For a quasilinear system of the Maxwell type where the right side is independent of the unknown vector field \(\mathbf{{u}}(x)\), we have existence of classical solutions, and an example is the magneto-static problem of the Maxwell equations. If the right side does depend on the unknown vector field \(\mathbf{{u}}(x)\), a scalar potential p(x) should be introduced to the equation and we are led to a quasilinear system of the Maxwell-Stokes type. The boundary condition on the potential p(x) should be determined according to the domain topology. We consider the Dirichlet boundary condition for the potential if the domain has no holes, and consider the Neumann boundary condition if the domain has holes. For each case existence of classical solutions \((\mathbf{{u}}(x), p(x))\) is proved and a priori estimates of the solutions are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By “Schauder regularity” for a second order equation or system we mean the Hölder continuity of the second order derivatives of some weak solutions.

  2. For (1.5) see Theorem 5.8, and for (1.6) see [7, 34].

  3. While the literature is extensive and is omitted here, we mention some very recent contributions [3, 5, 25, 42]. For more general systems of differential forms we mention [35, Chapter 7] and [33, 41].

  4. The Dirichlet condition for p is natural in this case due to the fact that when applying variational methods to the energy functional on spaces of divergence-free vector fields one obtains a weak solution \((\mathbf{{u}},p)\) with \(p=0\) on \(\partial \Omega \), see the proof of Proposition 3.1.

  5. We can take \((\mathbf{{u}}_\eta ,p_\eta )\) to be the solution of the Stokes problem

    $$\begin{aligned} -\Delta \mathbf{{u}}_\eta +\nabla p_\eta =\mathbf{{0}}\quad \text {and}\quad \mathrm{div\,}\mathbf{{u}}_\eta =h_\eta \quad \text {in }\Omega ,\quad \mathbf{{u}}_\eta =\eta \nu \quad \text {on }\partial \Omega . \end{aligned}$$

    The solution exists and is unique, and

    $$\begin{aligned} \Vert \mathbf{{u}}_\eta \Vert _{H^1(\Omega )}\le C(\Omega )(\Vert h_\eta \Vert _{L^2(\Omega )}+\Vert \eta \Vert _{H^{1/2}(\partial \Omega )})\le C(\Omega )\Vert \eta \Vert _{H^{1/2}(\partial \Omega )}, \end{aligned}$$

    see for instance [8, Theorem 4.5.2]. We have \(\mathbf{{u}}_\eta \in H^1_{t0}(\Omega ,\mathbb {R}^3)\).

  6. Let \(({\mathbf{v}}_\phi ,q_\phi )\) be the solution of

    $$\begin{aligned} -\Delta {\mathbf{v}}_\phi +\nabla q_\phi =\mathbf{{0}}\quad \text {and}\quad \mathrm{div\,}{\mathbf{v}}_\phi =\phi \quad \text {in }\Omega ,\quad {\mathbf{v}}_\phi =\mathbf{{0}}\quad \text {on }\partial \Omega . \end{aligned}$$

    Then \({\mathbf{v}}_\phi \in H^1_0(\Omega ,\mathbb {R}^3)\subset H^1_{t0}(\Omega ,\mathbb {R}^3)\), and satisfies the \(H^1\) estimate.

  7. Let \((\mathbf{{w}}_\eta ,q_\eta )\) be the solution of

    $$\begin{aligned} -\Delta \mathbf{{w}}_\eta +\nabla q_\eta =\mathbf{{0}}\quad \text {and}\quad \mathrm{div\,}\mathbf{{w}}_\eta =0\quad \text {in }\Omega ,\quad \mathbf{{w}}_\phi =(\eta -\eta _0)\nu \quad \text {on }\partial \Omega . \end{aligned}$$

    Then \(\mathbf{{w}}_\eta \in H^1_{t0}(\Omega ,\mathrm{div\,}0)\) is we needed.

  8. If \(\mathbf{{H}}\) and \(\mathbf{{f}}\) are given by (3.1), then by using the methods in calculus of variations (see for instance [44]) existence of weak solutions of (1.2) can be obtained under rather general conditions on P and F. For instance one may consider \(F(x,\mathbf{{u}})\) that increases slower than \(|\mathbf{{u}}|^q\) with \(1<q<6\). If \(F(x,\mathbf{{u}})=-a(x)|\mathbf{{u}}|^2+G(x,\mathbf{{u}})\) with \(a(x)\ge a_0>0\) and \(G(x,\mathbf{{u}})\) grows slower than \(|\mathbf{{u}}|^q\) with \(1<q<6\), then one can also obtain existence for a domain with holes.

  9. Note that regularity of \(\mathbf{{u}}\) can be derived using the equation (1.5) with \(\mathbf{{J}}\) replaced by \(\mathbf{{J}}_0=\mathbf{{J}}-\nabla \phi _J\). However we work with (1.12) directly.

  10. In this step we need \(\Omega \) to be a bounded domain in \(\mathbb {R}^3\) with a \(C^2\) boundary, \(\mathbf{{H}}\) satisfies \((H_1)\), \(\mathbf{{J}}\in L^2(\Omega ,\mathbb {R}^3)\) and \(\mathbf{{u}}^0_T\in T\!H^{1/2}(\partial \Omega ,\mathbb {R}^3)\).

  11. In this step we assume \(\Omega , \mathbf{{u}}^0_T\) satisfy (4.1), \(\mathbf{{H}}\) satisfy \((H_1),(H_2)\), and \(\mathbf{{J}}\in C^\alpha (\bar{\Omega },\mathbb {R}^3)\).

  12. See Lemma B.2 for the case where \({\mathcal {A}}\) is symmetric, and Lemma 5.5 for the case where \({\mathcal {A}}\) is not symmetric.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II. Comm. Pure Appl. Math. 12, 623–727 (1959); 17, 35–92 (1964)

  2. Ammari, H., Buffa, A., Nedelec, J.: A justification of eddy current model for the Maxwell equations. SIAM J. Appl. Math. 60, 1805–1823 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrouche, C., Seloula, N.: \(L^p\)- teory for vector potentials and Sobolev’s inequalities for vector fields. Application to the Stokes equations with presure boundary conditions. Math. Models Methods Appl. Sci. 23, 37–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amrouche, C., Penel, P., Seloula, N.: Some remarks on the boundary conditions in the theory of Navier-Stokes equations. Ann. Math. 20, 37–73 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Auchmuty, G., Alexander, J.C.: \(L^2\)- well-posedness of 3d-div-curl boundary value problems. Quart. Appl. Math. 63, 479–508 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bachinger, F., Langer, U., Schöberl, J.: Numerical analysis of nonlinear multiharmonic eddy current problems. Numer. Math. 100, 593–616 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bates, P., Pan, X.B.: On a problem related to vortex nucleation of 3 dimensional superconductors. Comm. Math. Phys. 276, 571–610 (2007). Erratum, 283, 861 (2008)

  8. Benci, V., Fortunato, D.: Towards a unified field theory for classical electrodynamics. Arch. Rational Mech. Anal. 173, 379–414 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bolik, J., von Wahl, W.: Estimating \(\nabla u \) in terms of div \({ u}\), curl \( { u}\), either \((\nu,{ u})\) or \(\nu \times { u}\) and the topology. Math. Methods Appl. Sci. 20, 734–744 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boyer, F., Fabrie, P.: Mathematical tools for the study of the incompressible Navier-Stokes equations and related models. Springer, New York (2010)

    MATH  Google Scholar 

  11. Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Padova. 31, 308–340 (1961)

    MathSciNet  MATH  Google Scholar 

  12. Chapman, S.: Macroscopic Models of Superconductivity, Ph. D thesis, Oxford University (1991)

  13. Costabel, M., Dauge, M., Nicaise, S.: Singularities of eddy current problems. ESAIM Math. Model. Numer. Anal. 37, 807–831 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dautray, R., Lions, J.-L.: Mathematical analysis and numerical methods for science and technology, vol. 3. Springer, New York (1990)

    Book  MATH  Google Scholar 

  15. Dutto, P., Impagliazzo, J.-L., Novotny, A.: Schauder estimates for steady compressible Navier-Stokes equations in bounded domains. Rend. Sem. Mat. Univ. Padova 98, 125–139 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Galdi, G.: An introduction to the mathematical theory of the Navier-Stokes equations: Steady-State problems, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  17. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order, 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  18. Girault, V., Raviart, P.A.: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  19. Grisvard, P.: Elliptic problems in nonsmooth domains, monographs and studies in mathematics, 24. Pitman, Boston (1985)

    MATH  Google Scholar 

  20. Janíková, E., Slodička, M.: Fix-point linearization schemes for nonlinear steady-state eddy current problems. Math. Meth. Appl. Sci. 30, 1697–1704 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, X., Zheng, W.Y.: An efficient eddy current model for nonlinear Maxwell equations with laminated conductors. SIAM J. Appl. Math. 72, 1021–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, X., Zheng, W.Y.: Homogenization of quasi-static Maxwell’s equation. SIAM Multiscale Model. Simul. 12(1), 152–180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jochmann, F.: The semistatic limit for Maxwell’s equations in an exterior domain. Comm. PDE 23(11–12), 2035–2076 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Kellogg, R., Osborn, J.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kozono, H., Yanagisawa, T.: \(L^r\)- variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58(4), 1853–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lieberman, G.: Solvability of quasilinear elliptic equations with nonlinear boundary conditions. Trans. Am. Math. Soc. 273, 753–765 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lieberman, G.: Hölder continuity of the gradient of solutions of uniformly parabolic equations with conormal boundary conditions. Annali Mat. Pura Appl. 148, 77–99 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lieberman, G.: Oblique derivative problems for Elliptic equations. World Scientific Pub. Co., Singapore (2013)

    Book  MATH  Google Scholar 

  29. Lieberman, G., Pan, X.B.: On a quasilinear system arising in the theory of superconductivity. Proc. R. Soc. Edinb. 141 A(2), 397–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maz’ya, V.G., Rossmann, J.: Schauder estimates for solutions to a mixed boundary value problem for the Stokes system in polyhedral domains. Math. Methods Appl. Sci. 29, 965–1017 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milani, A., Picard, R.: Decomposition theorems and their application to nonlinear electro- and magneto-static boundary value problems. In: Hildebrandt, S., Leis, R. (eds.) Partial differential equations and calculus of variations, pp. 317–340. Springer, Berlin (1988). (Lecture Notes in Math.)

    Chapter  Google Scholar 

  32. Milani, A., Picard, R.: Weak solution theory for Maxwell’s equstions in the semistatic limit case. J. Math. Anal. Appl. 191, 77–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mitrea, D., Mitrea, M., Taylor, M.: Layer potentials, the Hodge Laplacian and global boundary problems in non-Smooth Riemannian Manifolds. Memoirs Am. Math. Soc. 150(713), 1–20 (2001)

  34. Monneau, R.: Quasilinear elliptic system arising in a three-dimensional type II superconductor for infinite \(\kappa \). Nonlinear Anal. 52, 917–930 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morrey, C.: Multiple Integrals in the calculus of variations. Springer, New York (1966)

    MATH  Google Scholar 

  36. Pan, X.B.: On a quasilinear system involving the operator Curl. Calc. Var. PDE 36(3), 317–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pan, X.B.: Minimizing curl in a multiconnected domain. J. Math. Phys. 50(3), 033508-1–033508-10 (2009)

  38. Pan, X.B.: Regularity of weak solutions to nonlinear Maxwell systems. J. Math. Phys. 56, 071508 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Picard, R.: On the boundary value problems of electro- and magnetostatics. Proc. R. Soc. Edinb. 92A, 165–174 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rodríguez, A., Valli, A.: Eddy current approximation of Maxwell equations. Springer, Italia (2010)

    Book  MATH  Google Scholar 

  41. Schwarz, G.: Hodge decomposition—a method for solving boundary value problems. Springer, Berlin (1995). (Lecture Notes in Math. no. 1357)

  42. Shen, Z.W., Song, L.: On \(L^p\) estimates in homogenization of elliptic equations of Maxwell’s type. Adv. Math. 252, 7–21 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Solonnikov, V.: General boundary value problems for Douglis-Nirenberg elliptic systems II, Trudy Mat. Inst. Steklov, 92 (1966), 233–297; English Transl. Proc. Steklov Inst. Math. 92, 212–272 (1966)

    Google Scholar 

  44. Struwe, M.: Variational methods, 3rd edn. Springer, New York (2000)

    Book  MATH  Google Scholar 

  45. Teman, R.: Theory and numerical analysis of the Navier-Stokes equations. North-Holland, Amsterdam (1077)

    Google Scholar 

  46. von Wahl, W.: Estimating \(\nabla { u}\) by div \({ u}\) and curl \({ u}\). Math. Methods Appl. Sci. 15, 123–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yin, H.M.: On a nonlinear Maxwell’s system in quasi-stationary electromagnetic fields. Math. Models Methods Appl. Sci. 14(10), 1521–1539 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China Grant Nos. 11171111 and 11671143, and the Chinese Specialized Research Fund for the Doctoral Program of Higher Education Grant No. 20110076110001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Bin Pan.

Additional information

Communicated by F. H. Lin.

Submitted: 30 July 2015; accepted for publication: 5 October 2016.

Appendices

Appendix A: Spaces of vector fields

1.1 A.1: Notation

Subspaces of the Sobolev space \(H^k(\Omega ,\mathbb {R}^3)\):

$$\begin{aligned} H^k_{t0}(\Omega ,\mathbb {R}^3)= & {} \{\mathbf{{u}}\in H^1(\Omega ,\mathbb {R}^3): \mathbf{{u}}_T=\mathbf{{0}}\},\\ H^k_t(\Omega ,\mathrm{div\,}0,\mathbf{{u}}^0_T)= & {} \{\mathbf{{u}}\in H^1(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}=0,\; \mathbf{{u}}_T=\mathbf{{u}}^0_T\},\\ H^k_{t0}(\Omega ,\mathrm{div\,}0)= & {} \{\mathbf{{u}}\in H^1(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}=0,\; \mathbf{{u}}_T=\mathbf{{0}}\},\\ H^k_{n0}(\Omega ,\mathrm{div\,}0)= & {} \{\mathbf{{u}}\in H^1(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}=0,\; \nu \cdot \mathbf{{u}}=0\}. \end{aligned}$$

Subspaces of \(L^2(\Omega ,\mathbb {R}^3)\):

$$\begin{aligned} \mathcal H(\Omega ,\mathrm{div\,})= & {} \{\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}\in L^2(\Omega )\},\\ \mathcal H(\Omega ,\mathrm{curl\,})= & {} \{\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3): \mathrm{curl\,}\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3)\},\\ \mathcal H(\Omega ,\mathrm{div\,}0)= & {} \{\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}=0\},\\ {\mathcal {H}}_0(\Omega ,\mathrm{div\,}0)= & {} \{\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}=0,\; \nu \cdot \mathbf{{u}}=0\},\\ \mathcal H(\Omega ,\mathrm{curl\,}0)= & {} \{\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3): \mathrm{curl\,}\mathbf{{u}}=\mathbf{{0}}\}. \end{aligned}$$

Decompositions of \(L^2(\Omega ,\mathbb {R}^3)\) (see [14, pp. 225–226]):

$$\begin{aligned} \begin{array}{ll} &{}L^2(\Omega ,\mathbb {R}^3)=\mathcal H(\Omega ,\mathrm{curl\,}0)\oplus _{L^2(\Omega )} \mathrm{curl\,}H^1_{t0}(\Omega ,\mathrm{div\,}0),\\ &{}L^2(\Omega ,\mathbb {R}^n)=\mathcal H(\Omega ,\mathrm{div\,}0)\oplus _{L^2(\Omega )} \mathrm{grad }H^1_0(\Omega ). \end{array} \end{aligned}$$
(A.1)

Image of the operator \(\mathrm{curl\,}\) (see [14, p. 222, Proposition 3; p. 226, Remark 5]):

$$\begin{aligned}&\mathrm{curl\,}H^1(\Omega ,\mathbb {R}^3)=\mathrm{curl\,}H^1_{n0}(\Omega ,\mathrm{div\,}0)=\mathcal H^\Gamma (\Omega ,\mathrm{div\,}0),\nonumber \\&\mathrm{curl\,}H^1_{t0}(\Omega ,\mathrm{div\,}0)=\mathcal H_0^\Sigma (\Omega ,\mathrm{div\,}0), \end{aligned}$$
(A.2)

where (see \((O_1)\) and \((O_2)\) in Section 2 for the definition of \(\Gamma _j\) and \(\Sigma _i\))

$$\begin{aligned} \mathcal H^\Gamma (\Omega ,\mathrm{div\,}0)= & {} \{\mathbf{{u}}\in \mathcal H(\Omega ,\mathrm{div\,}0): \langle 1,\mathbf{{u}}\cdot \nu \rangle _{H^{1/2}(\Gamma _j),H^{-1/2}(\Gamma _j)}=0,\; j=1,\ldots , m+1\},\\ \mathcal H_0^\Sigma (\Omega ,\mathrm{div\,}0)= & {} \{\mathbf{{u}}\in L^2(\Omega ,\mathbb {R}^3): \mathrm{div\,}\mathbf{{u}}=0,\; \mathbf{{u}}\cdot \nu |_{\partial \Omega }=0,\\&\qquad \qquad \langle 1,\mathbf{{u}}\cdot \nu \rangle _{H^{1/2}(\Sigma _i),H^{-1/2}(\Sigma _i)}=0,\; i=1,\ldots , N\}. \end{aligned}$$

These yield the following decompositions of the kernel of the operators \(\mathrm{curl\,}\) and \(\mathrm{div\,}\):

$$\begin{aligned} \mathcal H(\Omega ,\mathrm{curl\,}0)=&\mathrm{grad }H^1(\Omega )\oplus _{L^2(\Omega )}\mathbb {H}_1(\Omega ),\nonumber \\ \mathcal H(\Omega ,\mathrm{div\,}0)=&{\mathcal {H}}^\Gamma (\Omega ,\mathrm{div\,}0)\oplus _{L^2(\Omega )}\mathbb {H}_2(\Omega ),\nonumber \\ \mathcal H_0(\Omega ,\mathrm{div\,}0)=&\mathcal H^\Sigma _0(\Omega ,\mathrm{div\,}0)\oplus _{L^2(\Omega )}\mathbb {H}_1(\Omega ). \end{aligned}$$
(A.3)

1.2 A.2 The div-curl-gradient inequalities

For various form of the div-curl-gradient inequalities we refer to [4, 9, 14, 25, 46] and the references therein. Here we list them in the form convenient to our use. In the following if \(k=0\) then the \(H^0\) norm stands for the \(L^2\) norm.

  1. (i)

    If \(\Omega \) is a bounded domain in \(\mathbb {R}^3\) with a \(C^{k+2}\) boundary, \(k\ge 0\), then we have the \(L^2\)-div-curl-gradient inequality (see [14, P. 212, Corollary 1])

    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{H^{k+1}(\Omega )}\le C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \nu \cdot \mathbf{{u}}\Vert _{H^{k+1/2}(\partial \Omega )}\},\nonumber \\ \end{aligned}$$
    (A.4)
    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{H^{k+1}(\Omega )}\le C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}_T\Vert _{H^{k+1/2}(\partial \Omega )}\},\nonumber \\ \end{aligned}$$
    (A.5)

    where \(C=C(\Omega ,k)\). If \(\mathbf{{u}}\in \mathbb {H}_1(\Omega )^\perp _{L^2(\Omega )}\) (resp. \(\mathbf{{u}}\in \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}\)) then the \(L^2\) norm of \(\mathbf{{u}}\) is the right side of (A.4) (resp. in the right side of (A.5)) can be removed (see [46]):

    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{H^{k+1}(\Omega )}\le & {} C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \nu \cdot \mathbf{{u}}\Vert _{H^{k+1/2}(\partial \Omega )}\},\nonumber \\&\forall \,\mathbf{{u}}\in H^{k+1}(\Omega ,\mathbb {R}^3)\cap \mathbb {H}_1(\Omega )^\perp _{L^2(\Omega )},\qquad \end{aligned}$$
    (A.6)
    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{H^{k+1}(\Omega )}\le & {} C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{H^k(\Omega )}+\Vert \mathbf{{u}}_T\Vert _{H^{k+1/2}(\partial \Omega )}\},\nonumber \\&\forall \,\mathbf{{u}}\in H^{k+1}(\Omega ,\mathbb {R}^3)\cap \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}. \end{aligned}$$
    (A.7)
  2. (ii)

    If \(\Omega \) is a bounded domain in \(\mathbb {R}^3\) with a \(C^{k+2+\alpha }\) boundary, \(k\ge 0\) and \(0<\alpha <1\), then we have the Hölder-div-curl-gradient inequality ([9]):

    $$\begin{aligned}&\Vert \mathbf{{u}}\Vert _{C^{k+1,\alpha }(\bar{\Omega })}\le C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })} +\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \nu \cdot \mathbf{{u}}\Vert _{C^{k+1,\alpha }(\partial \Omega )}\},\nonumber \\ \end{aligned}$$
    (A.8)
    $$\begin{aligned}&\Vert \mathbf{{u}}\Vert _{C^{k+1,\alpha }(\bar{\Omega })}\le C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}_T\Vert _{C^{k+1,\alpha }(\partial \Omega )}\},\nonumber \\ \end{aligned}$$
    (A.9)

    where \(C=C(\Omega ,k,\alpha )\). If \(\mathbf{{u}}\in \mathbb {H}_1(\Omega )^\perp _{L^2(\Omega )}\) (resp. \(\mathbf{{u}}\in \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}\)), then the \(L^2\) norm of \(\mathbf{{u}}\) is the right side of (A.8) (resp. in the right side of (A.9)) can be removed:

    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{C^{k+1,\alpha }(\bar{\Omega })}\le & {} C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \nu \cdot \mathbf{{u}}\Vert _{C^{k+1,\alpha }(\partial \Omega )}\},\nonumber \\&\forall \,\mathbf{{u}}\in C^{k+1,\alpha }(\bar{\Omega },\mathbb {R}^3)\cap \mathbb {H}_1(\Omega )^\perp _{L^2(\Omega )}, \end{aligned}$$
    (A.10)
    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{C^{k+1,\alpha }(\bar{\Omega })}\le & {} C\{\Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{C^{k,\alpha }(\bar{\Omega })}+\Vert \mathbf{{u}}_T\Vert _{C^{k+1,\alpha }(\partial \Omega )}\},\nonumber \\&\forall \,\mathbf{{u}}\in C^{k+1,\alpha }(\bar{\Omega },\mathbb {R}^3)\cap \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}, \end{aligned}$$
    (A.11)
  3. (iii)

    The \(W^{k,p}\) versions of (A.4) and (A.5) has been obtained in [25], which yield the \(W^{k,p}\) version of (A.6) and (A.7). For our use in section 4 we list the following:

    $$\begin{aligned} \Vert \mathbf{{u}}\Vert _{W^{1,p}(\Omega )}\le & {} C\{ \Vert \mathrm{curl\,}\mathbf{{u}}\Vert _{L^p(\Omega )} +\Vert \mathrm{div\,}\mathbf{{u}}\Vert _{L^p(\Omega )} +\Vert \nu \cdot \mathbf{{u}}\Vert _{W^{1-1/p,p}(\partial \Omega )}\},\nonumber \\&\forall \,\mathbf{{u}}\in W^{1,p}(\Omega ,\mathbb {R}^3)\cap \mathbb {H}_1(\Omega )^\perp _{L^2(\Omega )},\; 1<p\le 6, \end{aligned}$$
    (A.12)

where \(C=C(\Omega ,p)\).

Appendix B: Linear curl-Stokes system

We collect here some existence and regularity results for the linear curl-Stokes system

$$\begin{aligned} \left\{ \begin{array}{lll} &{}\mathrm{curl\,}[{\mathcal {A}}(x)\mathrm{curl\,}\mathbf{{u}}]=\mathbf{{J}}+\nabla p,\qquad \mathrm{div\,}\mathbf{{u}}=0 &{}\text {in }\Omega ,\\ &{}\mathbf{{u}}_T=\mathbf{{u}}^0_T,\quad p=0\quad &{}\text {on }\partial \Omega , \end{array} \right. \end{aligned}$$
(B.1)

and the linear Maxwell type system

$$\begin{aligned} \left\{ \begin{array}{lll} &{}\mathrm{curl\,}[{\mathcal {A}}(x)\mathrm{curl\,}\mathbf{{u}}]=\mathbf{{J}},\qquad \mathrm{div\,}\mathbf{{u}}=0 &{}\text {in }\Omega ,\\ &{}\mathbf{{u}}_T=\mathbf{{u}}^0_T&{}\text {on }\partial \Omega . \end{array} \right. \end{aligned}$$
(B.2)

If \(\mathbf{{J}}\in L^2(\Omega ,\mathbb {R}^3)\), existence of weak solutions of (B.1) follows from Proposition 3.1. Here we state a result of existence for slightly more general \(\mathbf{{J}}\):

Lemma B.1

Assume that \(\Omega \) is a bounded domain in \(\mathbb {R}^3\) with a \(C^2\) boundary, \({\mathcal {A}}\) satisfies \((A_0)\), \(\mathbf{{J}}\in H^{1,*}_{t0}(\Omega ,\mathbb {R}^3)\) and \(\mathbf{{u}}^0_T\in T\!H^{1/2}(\partial \Omega ,\mathbb {R}^3)\).

  1. (i)

    Eq.(B.1) has weak solutions if and only if

    $$\begin{aligned} \langle \mathbf{{J}},\mathbf{{h}}\rangle _{H^{1,*}_{t0}(\Omega ),H^1_{t0}(\Omega )} =0,\quad \forall \,\mathbf{{h}}\in \mathbb {H}_2(\Omega ). \end{aligned}$$
    (B.3)
  2. (ii)

    If (B.3) is satisfied, then all the weak solutions of (B.1) are given by \(\mathbf{{u}}=\mathbf{{u}}_J+\mathbf{{h}}\) and \(p=\phi _J\) for an arbitrary \(\mathbf{{h}}\in \mathbb {H}_2(\Omega )\), where \(\phi _J\) is given in (2.10) and \((\mathbf{{u}}_J,\phi _J)\) is a particular solution of (B.1).

  3. (iii)

    If \(\mathbf{{J}}\in L^2(\Omega ,\mathbb {R}^3)\), then (B.3) is equivalent to \(\mathbf{{J}}\in \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}\). Therefore (B.1) has weak solutions if and only if \(\mathbf{{J}}\in \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}\); (B.2) has weak solutions if and only if \(\mathbf{{J}}\in {\mathcal {H}}^\Gamma (\Omega ,\mathrm{div\,}0)\).

Proof

Assume \(\mathbf{{J}}\) satisfies (B.3). Let \(\mathcal U\in H^1_{t0}(\Omega ,\mathrm{div\,}0)\) be a divergence-free and tangential component-preserving extension of \(\mathbf{{u}}^0_T\) satisfying (2.11) with \(k=1\), and set \(\mathbf{{J}}_1=\mathbf{{J}}-\mathrm{curl\,}({\mathcal {A}}\mathrm{curl\,}\mathcal U)\). For any \(\mathbf{{h}}\in \mathbb {H}_2(\Omega )\), from (B.3) we have

$$\begin{aligned} \langle \mathbf{{J}}_1,\mathbf{{h}}\rangle _{H^{1,*}_{t0}(\Omega ),H^1_{t0}(\Omega )}=\langle \mathbf{{J}},\mathbf{{h}}\rangle _{H^{1,*}_{t0}(\Omega ),H^1_{t0}(\Omega )} -\int _\Omega {\mathcal {A}}\mathrm{curl\,}\mathcal U,\mathrm{curl\,}\mathbf{{h}}dx=0. \end{aligned}$$

Thus \(\mathbf{{J}}_1\) also satisfies (B.3). Let \(\phi _J\) and \(\phi _{J_1}\) be the functions in (2.10) determined by \(\mathbf{{J}}\) and \(\mathbf{{J}}_1\) respectively. Since \(\mathrm{div\,}\mathbf{{J}}_1=\mathrm{div\,}\mathbf{{J}}\), we see that \(\phi _{J_1}=\phi _J\). Let \(\mathbf{{u}}={\mathbf{v}}+\mathcal U\). Then (B.1) can be written as

$$\begin{aligned} \left\{ \begin{array}{lll} &{}\mathrm{curl\,}({\mathcal {A}}\,\mathrm{curl\,}{\mathbf{v}})=\mathbf{{J}}_1+\nabla p,\quad \mathrm{div\,}{\mathbf{v}}=0\quad &{}\text {in }\Omega ,\\ &{}{\mathbf{v}}_T=\mathbf{{0}},\quad p=0\quad &{}\text {on }\partial \Omega . \end{array} \right. \end{aligned}$$
(B.4)

Using (A.7), we can apply the Lax-Milgram theorem on \(H^1_{t0}(\Omega ,\mathrm{div\,}0)\cap \mathbb {H}_2(\Omega )^\perp \), and conclude that there exists \({\mathbf{v}}_0\in H^1_{t0}(\Omega ,\mathrm{div\,}0)\cap \mathbb {H}_2(\Omega )^\perp \) such that the following equality holds for all \({\mathbf{w}}\in H^1_{t0}(\Omega ,\mathrm{div\,}0)\cap \mathbb {H}_2(\Omega )^\perp \):

$$\begin{aligned} \int _\Omega \langle {\mathcal {A}}\mathrm{curl\,}\mathbf{{u}},\mathrm{curl\,}{\mathbf{v}_0}\rangle dx=\langle \mathbf{{J}}_1,{\mathbf{v}}\rangle _{H^{1,*}_{t0}(\Omega ),H^1_{t0}(\Omega )}. \end{aligned}$$
(B.5)

Since \(\mathbf{{J}}_1\) satisfies (B.3), we see that (B.5) holds for all \(\mathbf{{w}}\in \mathbb {H}_2(\Omega )\), hence it holds for all \(\mathbf{{w}}\in H^1_{t0}(\Omega ,\mathrm{div\,}0)\). Then by Lemma 2.2 we conclude that there exists \(p\in L^{2,-1/2}(\Omega )\) such that \(({\mathbf{v}}_0,p)\) is a weak solution of (B.4). From Corollary 2.6 we see that \(p=\phi _{J_1}=\phi _J\). \(\square \)

Now we derive regularity results for the linear curl-Stokes system.

Lemma B.2

Assume that \(\Omega \) is a bounded domain in \(\mathbb {R}^3\) with a \(C^3\) boundary, \({\mathcal {A}}\in C^1(\bar{\Omega },S^+(3))\) satisfies \((A_0)\), \(\mathbf{{J}}\in L^2(\Omega ,\mathbb {R}^3)\) and \(\mathbf{{u}}^0_T\in T\!H^{3/2}(\partial \Omega ,\mathbb {R}^3)\). Let \((\mathbf{{u}},p)\in H^1(\Omega ,\mathbb {R}^3)\times L^{2,-1/2}(\Omega )\) be a weak solution of (B.1). Then \(\mathbf{{u}}\in H^2(\Omega ,\mathbb {R}^3)\), \(p\in H^1_0(\Omega )\),

$$\begin{aligned}&\Vert \mathbf{{u}}\Vert _{H^2(\Omega )}\le C_1\left\{ \Vert \mathbf{{J}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}^0_T\Vert _{H^{3/2}(\partial \Omega )}\right\} ,\nonumber \\&\Vert \nabla p\Vert _{L^2(\Omega )}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{L^2(\Omega )}. \end{aligned}$$
(B.6)

If furthermore \(\mathbf{{u}}\) satisfies (2.13), then we have

$$\begin{aligned} \Vert \mathbf{{u}}\Vert _{H^2(\Omega )}\le C_1\left\{ \Vert \mathbf{{J}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}^0_T\Vert _{H^{3/2}(\partial \Omega )}\right\} . \end{aligned}$$
(B.7)

The constant \(C_1\) depends on \(\Omega \), \(\lambda \), \(\Vert {\mathcal {A}}\Vert _{C^1(\bar{\Omega })}\) and the constants in \((A_0)\).

Lemma B.3

Assume that \(\Omega \) is a bounded domain in \(\mathbb {R}^3\) with a \(C^{3,\alpha }\) boundary, \(0<\alpha <1\), \({\mathcal {A}}\in C^{1,\alpha }(\bar{\Omega }, S^+(3))\) satisfies \((A_0)\), \(\mathbf{{J}}\in C^\alpha (\bar{\Omega },\mathbb {R}^3)\) and \(\mathbf{{u}}^0_T\in T\!C^{2,\alpha }(\partial \Omega ,\mathbb {R}^3)\). Let \((\mathbf{{u}},p)\in H^1(\Omega ,\mathbb {R}^3)\times L^{2,-1/2}(\Omega )\) be a weak solution of (B.1). Then \(\mathbf{{u}}\in C^{2,\alpha }(\bar{\Omega },\mathbb {R}^3)\), \(p\in C^{1,\alpha }(\bar{\Omega })\),

$$\begin{aligned}&\Vert \mathbf{{u}}\Vert _{C^{2,\alpha }(\bar{\Omega })}\le C_2\left\{ \Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}^0_T\Vert _{C^{2,\alpha }(\partial \Omega )}\right\} ,\nonumber \\&\Vert p\Vert _{C^{1,\alpha }(\bar{\Omega })}\le C(\Omega ,\alpha )\Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}. \end{aligned}$$
(B.8)

If furthermore \(\mathbf{{u}}\) satisfies (2.13), then we have

$$\begin{aligned} \Vert \mathbf{{u}}\Vert _{C^{2,\alpha }(\bar{\Omega })}\le C_2\left\{ \Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}+\Vert \mathbf{{u}}^0_T\Vert _{C^{2,\alpha }(\partial \Omega )}\right\} . \end{aligned}$$
(B.9)

The constant \(C_2\) depends on \(\Omega \), \(\lambda \), \(\Vert {\mathcal {A}}\Vert _{C^{1,\alpha }(\bar{\Omega })}\) and the constants in \((A_0)\).

Proof of Lemmas B.2 and B.3

Step 1. Let \(\mathbf{{J}}\in L^2(\Omega ,\mathbb {R}^3)\), and let \(\mathbf{{J}}_0\) and \(\phi _J\) be given in the decomposition of \(\mathbf{{J}}\) in (2.9). Then \(\phi _J\in H^1(\Omega )\) and we have

$$\begin{aligned}&\Vert \phi _J\Vert _{H^1(\Omega )}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{L^2(\Omega )},\\&\Vert \mathbf{{J}}_0\Vert _{L^2(\Omega )}\le \Vert \mathbf{{J}}\Vert _{L^2(\Omega )}+\Vert \nabla \phi _J\Vert _{L^2(\Omega )}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{L^2(\Omega )}. \end{aligned}$$

Let \((\mathbf{{u}},p)\) be a weak solution of (B.1). From Lemma 2.5 we know that \(p=\phi _J\), and \(\mathbf{{u}}\) is a weak solution of (B.2) with \(\mathbf{{J}}\) replaced by \(\mathbf{{J}}_0\). So we can apply the difference-quotient method to (B.2) with \(\mathbf{{J}}\) replaced by \(\mathbf{{J}}_0\) (see [7, proof of Theorem 4.1]) and show that \(\mathbf{{u}}\in H^2(\Omega ,\mathbb {R}^3)\) and the first inequality of (B.6) with \(\mathbf{{J}}\) replaced by \(\mathbf{{J}}_0\) holds. If furthermore \(\mathbf{{u}}\) satisfies (2.13), then the estimate (B.7) with \(\mathbf{{J}}\) replaced by \(\mathbf{{J}}_0\) holds.

Now assume \(\Omega \) has a \(C^{3,\alpha }\) boundary and \(\mathbf{{J}}\in C^\alpha (\bar{\Omega },\mathbb {R}^3)\). Then \(\phi _J\in C^{1,\alpha }(\bar{\Omega })\) and we have (see [17, Theorem 8.33])

$$\begin{aligned}&\Vert \phi _J\Vert _{C^{1,\alpha }(\bar{\Omega })}\le C(\Omega ,\alpha )\Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })},\nonumber \\&\Vert \mathbf{{J}}_0\Vert _{C^\alpha (\bar{\Omega })}\le \Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}+\Vert \nabla \phi _J\Vert _{C^\alpha (\bar{\Omega })}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}. \end{aligned}$$
(B.10)

We shall prove that \(\mathbf{{u}}\in C^{2,\alpha }(\bar{\Omega },\mathbb {R}^3)\) and

$$\begin{aligned} \Vert \mathbf{{u}}\Vert _{C^{2,\alpha }(\bar{\Omega })}\le C\{\Vert \mathbf{{J}}_0\Vert _{C^\alpha (\bar{\Omega })}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}+\Vert \mathbf{{u}}^0_T\Vert _{C^{2,\alpha }(\partial \Omega )}\}, \end{aligned}$$
(B.11)

where C depends on \(\Omega ,\lambda ,\alpha \), \(\Vert {\mathcal {A}}\Vert _{C^{1,\alpha }(\bar{\Omega })}\) and \((A_0)\); If \(\mathbf{{u}}\) satisfies (2.13), then the term \(\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}\) in the right side of (B.11) is not necessary. Using (B.10) and (B.11) we get the first inequality in (B.8), and (B.9).

Step 2. Now we prove (B.11), where \(\mathbf{{u}}\in H^1(\Omega ,\mathbb {R}^3)\) is the solution of (B.2) with \(\mathbf{{J}}\) replaced by \(\mathbf{{J}}_0\). We may assume \(\mathbf{{u}}^0_T=\mathbf{{0}}\), otherwise we consider \(\mathbf{{w}}=\mathbf{{u}}-\mathcal U\), where \(\mathcal U\) is a divergence-free and tangential component-preserving extension of \(\mathbf{{u}}^0_T\) satisfying (2.12) with \(k=2\). Using (A.5) we get

$$\begin{aligned}&\Vert \mathbf{{u}}\Vert _{H^1(\Omega )}\le C(\Omega )\{\lambda ^{-1}\Vert \mathbf{{J}}_0\Vert _{H^{1,*}_{t0}(\Omega )}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}\}. \end{aligned}$$
(B.12)

If furthermore \(\mathbf{{u}}\in \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}\), then we use (A.7) instead of (A.5) to get

$$\begin{aligned}&\Vert \mathbf{{u}}\Vert _{H^1(\Omega )}\le C(\Omega )\lambda ^{-1}\Vert \mathbf{{J}}_0\Vert _{H^{1,*}_{t0}(\Omega )}. \end{aligned}$$
(B.13)

Using (B.2) and arguing as in step 3 of the proof of Theorem 4.1 (see (4.11)) we find a vector field \({\mathbf{j}}\in H^1(\Omega ,\mathbb {R}^3)\cap \mathbb {H}_1(\Omega )^\perp \) such that \(\mathrm{curl\,}{\mathbf{j}}=\mathbf{{J}}_0\) and \(\mathrm{div\,}{\mathbf{j}}=0\) in \(\Omega \), and \(\nu \cdot {\mathbf{j}}=0\) on \(\partial \Omega \). Then

$$\begin{aligned} \Vert {\mathbf{j}}\Vert _{H^1(\Omega )}\le C(\Omega )\Vert \mathbf{{J}}_0\Vert _{L^2(\Omega )},\qquad \Vert {\mathbf{j}}\Vert _{C^{1,\alpha }(\bar{\Omega })}\le C(\Omega ,\alpha )\Vert \mathbf{{J}}_0\Vert _{C^\alpha (\bar{\Omega })}. \end{aligned}$$
(B.14)

From (B.2) and the first equality of (A.3), there exist \(\phi \in \dot{H}^1(\Omega )\) and \(\mathbf{{h}}\in \mathbb {H}_1(\Omega )\), such that

$$\begin{aligned} {\mathcal {A}}\mathrm{curl\,}\mathbf{{u}}-{\mathbf{j}}=\nabla \phi +\mathbf{{h}}. \end{aligned}$$
(B.15)

Using (B.15) and since \(\mathbf{{h}}\in \mathbb {H}_1(\Omega )\) and \({\mathbf{j}}\in \mathbb {H}_1(\Omega )^\perp \), we have

$$\begin{aligned} \int _\Omega |\mathbf{{h}}|^2dx=\int _\Omega \langle \mathbf{{h}},{\mathcal {A}}\mathrm{curl\,}\mathbf{{u}}\rangle dx. \end{aligned}$$

From this and (A.8) we get

$$\begin{aligned} \Vert \mathbf{{h}}\Vert _{C^{1,\alpha }(\bar{\Omega })}\le C(\Omega ,\alpha )\Vert \mathbf{{h}}\Vert _{L^2(\Omega )}\le C(\Omega ,\alpha )\Vert {\mathcal {A}}\Vert _{C^0(\bar{\Omega })}\Vert \mathbf{{u}}\Vert _{H^1(\Omega )}. \end{aligned}$$
(B.16)

From (B.15) we can write

$$\begin{aligned} \mathrm{curl\,}\mathbf{{u}}=M(\nabla \phi +{\mathbf{j}}+\mathbf{{h}}), \end{aligned}$$
(B.17)

where \(M={\mathcal {A}}^{-1}\). Since \({\mathcal {A}}\in C^{1,\alpha }(\bar{\Omega }, S_+(3,\mathbb {R}))\), so \(M\in C^{1,\alpha }(\bar{\Omega },S_+(3,\mathbb {R}))\). Since \(\mathbf{{u}}_T=\mathbf{{u}}_T^0=\mathbf{{0}}\), we have \(\nu \cdot \mathrm{curl\,}\mathbf{{u}}=\nu \cdot \mathrm{curl\,}\mathbf{{u}}_T=0\) on \(\partial \Omega \), and we find that \(\phi \) satisfies the following

$$\begin{aligned} \left\{ \begin{array}{ll} &{}\mathrm{div\,}[M(\nabla \phi +{\mathbf{j}}+\mathbf{{h}})]=0\quad \text {in }\Omega ,\\ &{}\nu \cdot M(\nabla \phi +{\mathbf{j}}+\mathbf{{h}})=0\quad \text {on }\partial \Omega . \end{array} \right. \end{aligned}$$
(B.18)

By \((A_0)\) we have \(\langle M\nu ,\nu \rangle \ge \gamma \) for some \(\gamma >0\). So we can apply the Calderón-Zygmund estimate to (B.18) and find \(\nabla \phi \in L^r(\Omega ,\mathbb {R}^3)\) and

$$\begin{aligned} \Vert \nabla \phi \Vert _{L^r(\Omega )}\le C_1\Vert {\mathbf{j}}+\mathbf{{h}}\Vert _{L^r(\Omega )} \end{aligned}$$

for any \(1<r<\infty \), where \(C_1\) depends on \(\Omega \), \(\lambda (M)\), \(\Lambda (M)\), r, and the modula of continuity of M. Then from the Sobolev embedding theorem, for \(0<\delta <1/2\) we have

$$\begin{aligned} \Vert \phi \Vert _{C^\delta (\bar{\Omega })}\le&C_2 \Vert {\mathbf{j}}+\mathbf{{h}}\Vert _{L^6(\Omega )}\le C_2\Vert {\mathbf{j}}+\mathbf{{h}}\Vert _{H^1(\Omega )}. \end{aligned}$$
(B.19)

\(C_2\) depends on \(\Omega ,\lambda (M),\Lambda (M),\delta \), and the modula of continuity of M. Then we apply the Schauder estimate to (B.18) to find \(\phi \in C^{2,\alpha }(\bar{\Omega })\), and using (B.19) to conclude that

$$\begin{aligned} \Vert \phi \Vert _{C^{2,\alpha }(\bar{\Omega })}\le C_3\{\Vert {\mathbf{j}}+\mathbf{{h}}\Vert _{C^{1,\alpha }(\bar{\Omega })}+\Vert \phi \Vert _{C^0(\bar{\Omega })}\}\le C_4\Vert {\mathbf{j}}+\mathbf{{h}}\Vert _{C^{1,\alpha }(\bar{\Omega })}, \end{aligned}$$
(B.20)

where \(C_3\) and \(C_4\) depend on \(\Omega \), \(\alpha \), \(\lambda (M)\), \(\Lambda (M)\), \(\Vert M\Vert _{C^1(\bar{\Omega })}\). Going back to (B.17) and using (A.9) we find \(\mathbf{{u}}\in C^{2,\alpha }(\bar{\Omega },\mathbb {R}^3)\), and using (A.9), (B.14), (B.16) and (B.20) we find

$$\begin{aligned} \Vert \mathbf{{u}}\Vert _{C^{2,\alpha }(\bar{\Omega })}\le & {} C(\Omega ,\alpha )\{\Vert M\Vert _{C^{1,\alpha }(\bar{\Omega })}\Vert {\mathbf{j}}+\mathbf{{h}}+\nabla \phi \Vert _{C^{1,\alpha }(\bar{\Omega })}+\Vert \mathbf{{u}}\Vert _{L^2(\Omega )}\}\\ {}\le & {} C_5\{\Vert \mathbf{{J}}_0\Vert _{C^\alpha (\bar{\Omega })}+\Vert \mathbf{{u}}\Vert _{H^1(\Omega )}\}, \end{aligned}$$

where \(C_5\) depends on \(\Omega \), \(\alpha \), \(\lambda (M)\), \(\Lambda (M)\), \(\Vert M\Vert _{C^{1,\alpha }(\bar{\Omega })}\), \(\Vert {\mathcal {A}}\Vert _{C^0(\bar{\Omega })}\). From this and (B.12) we get (B.11) with the constant C depending on \(\Omega \), \(\alpha \), \(\lambda (M)\), \(\Lambda (M)\), \(\Vert M\Vert _{C^{1,\alpha }(\bar{\Omega })}\), \(\Vert {\mathcal {A}}\Vert _{C^0(\bar{\Omega })}\).

If \(\mathbf{{u}}\in \mathbb {H}_2(\Omega )^\perp _{L^2(\Omega )}\), since we have assumed \(\mathbf{{u}}_T=\mathbf{{u}}_T^0=0\), using (B.13) instead of (B.12) we find

$$\begin{aligned} \Vert \mathbf{{u}}\Vert _{C^{2,\alpha }(\bar{\Omega })}\le C\Vert \mathbf{{J}}_0\Vert _{C^\alpha (\bar{\Omega })}. \end{aligned}$$

\(\square \)

Appendix C: The projections \({\mathcal {P}}_0\) and \({\mathcal {P}}_1\)

For \(\mathbf{{J}}\in L^2(\Omega ,\mathbb {R}^3)\), let

$$\begin{aligned} {\mathcal {P}}_0(\mathbf{{J}})=\mathbf{{J}}+\nabla p, \end{aligned}$$

where \(p\in H^1_0(\Omega )\) is a solution of (1.9). \({\mathcal {P}}_0(\mathbf{{J}})\) and \(\nabla p\) are orthogonal in \(L^2(\Omega ,\mathbb {R}^3)\), hence \({\mathcal {P}}_0: L^2(\Omega ,\mathbb {R}^3)\rightarrow \mathcal H(\Omega ,\mathrm{div\,}0)\) is an orthonormal projection (see the second equality in (A.1)). By the classical elliptic estimates (see for instance [17, 19]) we have the following

Lemma C.1

Let \(\Omega \) be a bounded domain in \(\mathbb {R}^3\) with a Lipschitzian boundary. Then \({\mathcal {P}}_0: L^2(\Omega ,\mathbb {R}^3)\rightarrow \mathcal H(\Omega ,\mathrm{div\,}0)\) is an orthogonal project and it is surjective.

  1. (i)

    If \(\partial \Omega \) is of \(C^{k+1}\) with \(k\ge 1\), then \({\mathcal {P}}_0: H^{k}(\Omega ,\mathbb {R}^3)\rightarrow H^{k}(\Omega ,\mathrm{div\,}0)\) is surjective and

    $$\begin{aligned} \Vert {\mathcal {P}}_0(\mathbf{{w}})\Vert _{H^{k}(\Omega )}\le C(\Omega ,k)\{\Vert \mathrm{curl\,}\mathbf{{w}}\Vert _{H^{k-1}(\Omega )}+\Vert {\mathcal {P}}_0(\mathbf{{w}})\Vert _{L^2(\Omega )}+\Vert \mathbf{{w}}_T\Vert _{H^{k-1/2}(\partial \Omega )}\}.\nonumber \\ \end{aligned}$$
    (C.1)
  2. (ii)

    If \(\partial \Omega \) is of \(C^{k+1,\alpha }\) with \(k\ge 1\) and \(0<\alpha <1\), then \({\mathcal {P}}_0: C^{k,\alpha }(\bar{\Omega },\mathbb {R}^3)\rightarrow C^{k,\alpha }(\Omega ,\mathrm{div\,}0)\) is surjective, and

    $$\begin{aligned} \Vert {\mathcal {P}}_0(\mathbf{{w}})\Vert _{C^{k,\alpha }(\bar{\Omega })}\le C(\Omega ,k,\alpha )\{\Vert \mathrm{curl\,}\mathbf{{w}}\Vert _{C^{k-1,\alpha }(\Omega )}+\Vert {\mathcal {P}}_0(\mathbf{{w}})\Vert _{L^2(\Omega )}+\Vert \mathbf{{w}}_T\Vert _{C^{k,\alpha }(\partial \Omega )}\}.\nonumber \\ \end{aligned}$$
    (C.2)

The term \(\Vert {\mathcal {P}}_0(\mathbf{{w}})\Vert _{L^2(\Omega )}\) in the right side of (C.1) and (C.2) can be replaced by \(\Vert \mathbf{{w}}\Vert _{L^2(\Omega )}\), and if \(\Omega \) has no holes then this term can be removed.

Now we consider the projection \({\mathcal {P}}_1\). Let \(\Omega \) satisfy \((O_1)\). For \(\mathbf{{J}}\in {\mathcal {H}}(\Omega ,\mathrm{div\,})\), let \(c(\mathbf{{J}})\) be the piece-wise constant function on \(\partial \Omega \) defined by (1.11). Denote

$$\begin{aligned}&\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}=\left( \Vert \mathrm{div\,}\mathbf{{J}}\Vert _{L^2(\Omega )}^2+\Vert \mathbf{{J}}\Vert _{L^2(\Omega )}^2\right) ^{1/2},\\&\Vert c(\mathbf{{J}})\Vert _1=\sum _{i=1}^{m+1}|c_i(\mathbf{{J}})||\Gamma _i|,\qquad \Vert c(\mathbf{{J}})\Vert _\infty =\mathrm{max}_{1\le i\le m+1}|c_i(\mathbf{{J}})|. \end{aligned}$$

We have

$$\begin{aligned} \Vert c(\mathbf{{J}})\Vert _q\le C(\Omega )\Vert \nu \cdot \mathbf{{J}}\Vert _{H^{-1/2}(\partial \Omega )}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})} \end{aligned}$$

for \(q=1,\infty \).

Lemma C.2

Assume \(\Omega \) is a bounded domain in \(\mathbb {R}^3\) satisfying \((O_1)\) with \(r\ge 2\). Given \(\mathbf{{J}}\in {\mathcal {H}}(\Omega ,\mathrm{div\,})\), (1.10) has a unique solution p, and

$$\begin{aligned}&\Vert p\Vert _{H^2(\Omega )}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})},\nonumber \\&\Vert p\Vert _{H^k(\Omega )} \le C(\Omega ,k)\left\{ \Vert \mathrm{div\,}\mathbf{{J}}\Vert _{H^{k-2}(\Omega )}+\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}\right\} ,\qquad \quad 3\le k\le r,\nonumber \\&\Vert p\Vert _{C^{1,\alpha }(\bar{\Omega })}\le C(\Omega ,\alpha )\left\{ \Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}+\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}\right\} ,\nonumber \\&\Vert p\Vert _{C^{k,\alpha }(\bar{\Omega })}\le C(\Omega ,k,\alpha )\left\{ \Vert \mathrm{div\,}\mathbf{{J}}\Vert _{C^{k-2+\alpha }(\bar{\Omega })}+\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}\right\} ,\quad 2\le k\le r. \end{aligned}$$
(C.3)

If \(\mathrm{div\,}\mathbf{{J}}=0\), then for \(1\le k\le r\) and \(0<\alpha <1\) we have

$$\begin{aligned} \Vert p\Vert _{H^k(\Omega )}\le C(\Omega ,k)\Vert c(\mathbf{{J}})\Vert _\infty ,\qquad \Vert p\Vert _{C^{k,\alpha }(\bar{\Omega })}\le C(\Omega ,\alpha )\Vert c(\mathbf{{J}})\Vert _\infty . \end{aligned}$$

Proof

(1.10) has a solution p because

$$\begin{aligned} \int _{\partial \Omega }c(\mathbf{{J}})(x)dS=\int _{\Omega }\mathrm{div\,}\mathbf{{J}}dx, \end{aligned}$$

and the solution is unique. Multiplying the equation (1.10) by p and integrating we have

$$\begin{aligned} \int _\Omega |\nabla p|^2dx= & {} -\int _\Omega \mathbf{{J}}\cdot \nabla p dx+\int _{\partial \Omega }(\nu \cdot \mathbf{{J}}-c(\mathbf{{J}}))p\;dS\\\le & {} \Vert \mathbf{{J}}\Vert _{L^2(\Omega )}\Vert \nabla p\Vert _{L^2(\Omega )}+\Vert \nu \cdot \mathbf{{J}}-c(\mathbf{{J}})\Vert _{H^{-1/2}(\partial \Omega )}\Vert p\Vert _{H^{1/2}(\partial \Omega )}. \end{aligned}$$

Since the integral of p vanishes, we have \(\Vert p\Vert _{H^{1/2}(\partial \Omega )}\le C(\Omega )\Vert \nabla p\Vert _{L^2(\Omega )}\). So we find

$$\begin{aligned} \Vert \nabla p\Vert _{L^2(\Omega )}\le \Vert \mathbf{{J}}\Vert _{L^2(\Omega )}+C(\Omega )\Vert \nu \cdot \mathbf{{J}}-c(\mathbf{{J}})\Vert _{H^{-1/2}(\partial \Omega )} \le C(\Omega )\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}. \end{aligned}$$
(C.4)

From the \(H^k\) estimates of Neumann problem (see for instance [19, Ch.2], [28, Ch.5], also see [18, Theorem I.1.10]) and using (C.4) we see that, for \(2\le k\le r\),

$$\begin{aligned} \Vert p\Vert _{H^k(\Omega )}\le & {} C(\Omega ,k)\{\Vert \mathrm{div\,}\mathbf{{J}}\Vert _{H^{k-2}(\Omega )}+\Vert p\Vert _{L^2(\Omega )}+\Vert c(\mathbf{{J}})\Vert _{H^{k-1/2}(\partial \Omega )}\}\\\le & {} C(\Omega ,k)\{\Vert \mathrm{div\,}\mathbf{{J}}\Vert _{H^{k-2}(\Omega )}+\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}+\Vert c(\mathbf{{J}})\Vert _\infty \}. \end{aligned}$$

The proof of the other inequalities is standard. \(\square \)

For \(\mathbf{{J}}\in {\mathcal {H}}(\Omega ,\mathrm{div\,})\) we define

$$\begin{aligned} {\mathcal {P}}_1(\mathbf{{J}})=\mathbf{{J}}+\nabla p, \end{aligned}$$

where p is the solution of (1.10) associated with \(\mathbf{{J}}\). Then \({\mathcal {P}}_1\) is a projection from \({\mathcal {H}}(\Omega ,\mathrm{div\,})\) onto \({\mathcal {H}}^\Gamma (\Omega ,\mathrm{div\,}0)\). \({\mathcal {P}}_1\) is not an orthogonal projection as \({\mathcal {P}}_1(\mathbf{{J}})\) is not orthogonal to \(\nabla p\) with respect to the \(L^2\) inner product. From Lemma C.2 we get the following estimates of \({\mathcal {P}}_1(\mathbf{{J}})\).

Lemma C.3

Let \(\Omega \) be a bounded domain in \(\mathbb {R}^3\) satisfying \((O_1)\) with \(r\ge 2\). Then \({\mathcal {P}}_1\) is a projection from \({\mathcal {H}}(\Omega ,\mathrm{div\,})\) onto \({\mathcal {H}}^\Gamma (\Omega ,\mathrm{div\,}0)\), and

$$\begin{aligned} \Vert {\mathcal {P}}_1(\mathbf{{J}})\Vert _{L^2(\Omega )}\le C(\Omega )\Vert \mathbf{{J}}\Vert _{{\mathcal {H}}(\Omega ,\mathrm{div\,})}. \end{aligned}$$

If \(1\le k\le r-1\) and \(\mathbf{{J}}\in H^k(\Omega ,\mathbb {R}^3)\), then \({\mathcal {P}}_1(\mathbf{{J}})\in H^k(\Omega ,\mathbb {R}^3)\) and

$$\begin{aligned} \Vert {\mathcal {P}}_1(\mathbf{{J}})\Vert _{H^k(\Omega )}\le C(\Omega ,k)\Vert \mathbf{{J}}\Vert _{H^k(\Omega )}. \end{aligned}$$

If \(0\le k\le r-1\), \(0<\alpha <1\) and \(\mathbf{{J}}\in C^{k,\alpha }(\bar{\Omega },\mathbb {R}^3)\), then \({\mathcal {P}}_1(\mathbf{{J}})\in C^{k,\alpha }(\bar{\Omega },\mathbb {R}^3)\) and

$$\begin{aligned}&\Vert {\mathcal {P}}_1(\mathbf{{J}})\Vert _{C^\alpha (\bar{\Omega })}\le C(\Omega ,\alpha )\left( \Vert \mathbf{{J}}\Vert _{C^\alpha (\bar{\Omega })}+\Vert \mathrm{div\,}\mathbf{{J}}\Vert _{L^2(\Omega )}\right) ,\\&\Vert {\mathcal {P}}_1(\mathbf{{J}})\Vert _{C^{k,\alpha }(\bar{\Omega })}\le C(\Omega ,k,\alpha )\Vert \mathbf{{J}}\Vert _{C^{k,\alpha }(\bar{\Omega })},\quad 1\le k\le r-1. \end{aligned}$$

Appendix D: List of assumptions

\((A_0)\): Section 3.

\((B_2)\): Subsection 2.3.

(F): Section 3.

\((f_1)\), \((f_2)\): Subsection 4.2. \((f_2')\): Subsection 6.1. \((f_3)\), \((f_4)\): Subsection 4.3.

\((H_1)\), \((H_2)\), \((H_3)\): Subsection 2.3. \((H_4)\): Subsection 2.5. \((H_5)\): Subsection 5.2.

\((O_1)\), \((O_2)\): Subsection 2.1.

(P): Section 3.

\((U_1)\), \((U_2)\): Subsection 4.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, XB. Existence and regularity of solutions to quasilinear systems of Maxwell type and Maxwell-Stokes type. Calc. Var. 55, 143 (2016). https://doi.org/10.1007/s00526-016-1081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1081-9

Mathematics Subject Classification

Navigation