Skip to main content
Log in

The Groups of Two by Two Matrices in Double and Dual Numbers, and Associated Möbius Transformations

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Möbius transformations have been studied over the field of complex numbers. In this paper, we investigate Möbius transformations over two rings which are not fields: the ring of double numbers and the ring of dual numbers. We give types of continuous one-parameter subgroups of \(\mathrm {GL}_2({}^2 \mathbb {R}),\) \(\mathrm {SL}_2({}^2 \mathbb {R}),\) \(\mathrm {GL}_2(\mathbb {D}),\) and \(\mathrm {SL}_2(\mathbb {D}).\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L.V.: Möbius transformations and Clifford Numbers. Differential Geometry and Complex analysis, pp. 65–73 (1985)

    Chapter  Google Scholar 

  2. Ahlfors, L.V.: Möbius transformations in \(\mathbb{R}^{n}\) expressed through \(2\times 2\) matrices of Clifford numbers. Complex Var. Theory Appl. 5(2–4), 215–224 (1986)

    MATH  Google Scholar 

  3. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Second, Graduate Texts in Mathematics, vol. 13. Springer, New York (1992)

    MATH  Google Scholar 

  4. Anglès, P.: Real conformal spin structures on manifolds. Stud. Sci. Math. Hungar. 23(1–2), 115–139 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Beardon, A.F.: The Geometry of Discrete Groups. Graduate Texts in Mathematics, vol. 91. Springer, New York (1995). (Corrected reprint of the 1983 original)

    Google Scholar 

  6. Beardon, A.F.: Continued fractions, discrete groups and complex dynamics. Comput. Methods Funct. Theory 1(2), 535–594 (2001). (On table of contents: 2002)

    Article  MathSciNet  Google Scholar 

  7. Berger, M.: Geometry I, Universitext. Springer, Berlin (2009). (Translated from the 1977 French original by M. Cole and S. Levy, Fourth printing of the 1987 English translation)

    Google Scholar 

  8. Blunck, A., Havlicek, H.: Projective representations. I. Projective lines over rings. Abh. Math. Sem. Univ. Hamburg 70, 287–299 (2000)

    Article  MathSciNet  Google Scholar 

  9. Brewer, S.: Projective cross-ratio on hypercomplex numbers. Adv. Appl. Clifford Algebra 23(1), 1–14 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cartan, É.: Les groupes d’holonomie des espaces généralisés. Acta Math. 48, 1–42 (1926). (French)

    Article  Google Scholar 

  11. Cerejeiras, P., Cnops, J.: Hodge–Dirac operators for hyperbolic spaces. Complex Var. Theory Appl. 41(3), 267–278 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Cnops, J.: The Dirac operator on hypersurfaces and spheres, Dirac Operators in Analysis (Newark, DE, 1997), pp. 141–151 (1998)

  13. Cnops, J.: An Introduction to Dirac Operators on Manifolds. Progress in Mathematical Physics, vol. 24. Birkhäuser Boston Inc, Boston (2002)

    Book  Google Scholar 

  14. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras. Mathematics and Its Applications, vol. 57. Kluwer Academic Publishers Group, Dordrecht (1990). (Spinor structures)

    Book  Google Scholar 

  15. Deheuvels, R.: Groupes conformes et algèbres de Clifford. Rend. Sem. Mat. Univ. Politec. Torino 43(2), 205–226 (1986). (1985)

    MathSciNet  MATH  Google Scholar 

  16. Gal, S.G.: Introduction to Geometric Function Theory of Hypercomplex Variables. Nova Science Publishers, Inc., Hauppauge (2004). (With a foreword by Petru T. Mocanu)

    Google Scholar 

  17. Gromov, N.A.: Possible quantum kinematics. II. Nonminimal case. J. Math. Phys. 51(8), 083515, 12 (2010)

    Article  MathSciNet  Google Scholar 

  18. Gromov, N.A., Kuratov, V.V.: Possible quantum kinematics. J. Math. Phys. 47(1), 013502, 9 (2006)

    Article  MathSciNet  Google Scholar 

  19. Haantjes, J.: Conformal representations of an n-dimensional euclidean space with a non-definite fundamental form on itself. Proc. Akad. Wet. Amsterdam 40, 700–705 (1937). (English)

    MATH  Google Scholar 

  20. Hestenes, D.: New Foundations for Classical Mechanics. Second, Fundamental Theories of Physics, vol. 99. Kluwer Academic Publishers Group, Dordrecht (1999)

    MATH  Google Scholar 

  21. Hestenes, D.: Space-Time Algebra. Birkhäuser/Springer, Cham (2015). (With a foreword by Anthony Lasenby)

    Book  Google Scholar 

  22. Jacques, M., Short, I.: Continued fractions and semigroups of Möbius transformations (2016). E-print: arXiv:1609.00576v3

  23. Kisil, V.V.: How many essentially different function theories exist? Clifford Algebras and Their Application in Mathematical Physics (Aachen, 1996), pp. 175–184 (1998)

  24. Kisil, V.V.: Analysis in \(\mathbb{R}^{1,1}\) or the principal function theory. Complex Var. Theory Appl. 40(2), 93–118 (1999)

    MATH  Google Scholar 

  25. Kisil, V.V.: Meeting Descartes and Klein somewhere in a noncommutative space. Highlights of Mathematical Physics (London, 2000), pp. 165–189 (2002)

  26. Kisil, V.V.: Spectrum as the support of functional calculus. Funct. Anal. Appl. 133–141 (2004)

  27. Kisil, V.V.: Starting with the group SL\(_{2}\)(R). Note Am. Math. Soc. 54(11), 1458–1465 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Kisil, V.V.: Two-dimensional conformal models of space-time and their compactification. J. Math. Phys. 48(7), 073506, 8 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. Kisil, V.V.: Erlangen program at large-1: geometry of invariants. SIGMA Symmetry Integrability and Geometry: Methods Applications 6, Paper 076, 45 (2010)

  30. Kisil, V.V.: Erlangen program at large: an overview. Adv. Appl. Anal. pp. 1–94 (2012)

  31. Kisil, V.V.: Geometry of Möbius Transformations. Imperial College Press, London (2012). Elliptic, parabolic and hyperbolic actions of S\(L_{2}(\mathbb{R})\), With 1 DVD-ROM

    Book  Google Scholar 

  32. Kisil, V.V.: Remark on continued fractions, Möbius transformations and cycles. Izvestiya Komi nauchnogo centra UrO RAN 25(1), 11–17 (2016). arXiv:1412.1457

  33. Kisil, V.V.: Poincaré extension of Möbius transformations. Complex Var. Elliptic Equ. (2017). https://doi.org/10.1080/17476933.2016.1250399. arXiv:1507.02257

    Article  Google Scholar 

  34. Kisil, V.V.: Symmetry, geometry, and quantization with hypercomplex numbers. Geometr. Integrab. Quant. 18, 11–76 (2017). arXiv:1611.05650

    Article  MathSciNet  Google Scholar 

  35. Lounesto, P.: Clifford Algebras and Spinors. London Mathematical Society Lecture Note Series, vol. 286, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  36. Maks, J.: Clifford Algebras and Möbius Transformations, Clifford Algebras and Their Applications in Mathematical Physics (Montpellier, 1989), pp. 57–63 (1992)

  37. Möbius, A.F.: Der barycentrische Calcul, Georg Olms Verlag, Hildesheim-New York (1976). (Ein neues Hülfsmittel zur analytischen Behandlung der Geometrie, Nachdruck der 1827 Ausgabe)

  38. Olsen, J.: The Geometry of Möbius Transformations. University of Rochester, Rochester (2010)

    Google Scholar 

  39. Pilipchuk, V.N.: Nonlinear Dynamics. Between Linear and Impact Limits. Lecture Notes in Applied and Computational Mechanics, vol. 52. Springer, Berlin (2010). (English)

    MATH  Google Scholar 

  40. Pilipchuk, V.N., Andrianov, I.V., Markert, B.: Analysis of micro-structural effects on phononic waves in layered elastic media with periodic nonsmooth coordinates. Wave Mot. 63, 149–169 (2016)

    Article  MathSciNet  Google Scholar 

  41. Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge Studies in Advanced Mathematics, vol. 50. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  42. Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  43. Shirokov, D.S.: Symplectic, orthogonal and linear Lie groups in Clifford algebra. Adv. Appl. Clifford Algebra 25(3), 707–718 (2015)

    Article  MathSciNet  Google Scholar 

  44. Simon, B.: Szegö’s Theorem and Its Descendants. M. B. Porter Lectures. Princeton University Press, Princeton, NJ (2011). (Spectral theory for \(L^{2}\) perturbations of orthogonal polynomials)

    MATH  Google Scholar 

  45. Ulrych, S.: Conformal numbers. Adv. Appl. Clifford Algebra 27(2), 1895–1906 (2017)

    Article  MathSciNet  Google Scholar 

  46. van der Waerden, B.L.: A History of Algebra. Springer, Berlin (1985). (From al-Khwārizmīto Emmy Noether)

    Book  Google Scholar 

  47. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, New York (1979). An elementary account of Galilean geometry and the Galilean principle of relativity, Heidelberg Science Library, Translated from the Russian by Abe Shenitzer, With the editorial assistance of Basil Gordon

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to the Iraqi government for its support in a form of a scholarship. I would like to thank Prof. Vladimir Kisil for valuable discussions and important remarks. I am also grateful to the anonymous referees for many useful suggestions which were applied to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawlah A. Mustafa.

Additional information

Communicated by Rafał Abłamowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, K.A. The Groups of Two by Two Matrices in Double and Dual Numbers, and Associated Möbius Transformations. Adv. Appl. Clifford Algebras 28, 92 (2018). https://doi.org/10.1007/s00006-018-0910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0910-7

Mathematics Subject Classification

Keywords

Navigation