Skip to main content
Log in

Conformal Numbers

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The conformal compactification is considered in a hierarchy of hypercomplex projective spaces with relevance in physics including Minkowski and Anti-de Sitter space. The geometries are expressed in terms of bicomplex Vahlen matrices and further broken down into their structural components. The relation between two subsequent projective spaces is displayed in terms of the complex unit and three additional hypercomplex numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Futagawa, M.: On the theory of functions of a quaternary variable. Tôhoku Math. J. 29, 175 (1928)

    MATH  Google Scholar 

  2. Scorza Dragoni, S.: Sulle funzioni olomorfe di una variabile bicomplessa, Reale Accademia d’ltalia. Mem. Classe Sci. Nat. Fis. Mat. 5, 597 (1934)

    MATH  Google Scholar 

  3. Spampinato, K.: Sulla rappresentazione delle funzioni di variabile bicomplessa totalmente derivabili. Annali di Matematica pura ed applicata 14, 305 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  4. Riley, J.D.: Contributions to the theory of functions of a bicomplex variable. Tôhoku Math. J. 5, 132 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  5. Price, G.B.: An introduction to multicomplex spaces and functions, Monographs and Textbooks in Pure and Applied Mathematics 140. Marcel Dekker Inc., New York (1991)

    Google Scholar 

  6. Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C., Vajiac, A.: Complex Laplacian and derivatives of bicomplex functions. Complex Anal. Oper. Theory 7, 1675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Struppa, D.C.: A note on analytic functionals on the complex light cone. In: Gentili, G., Sabadini, I., Shapiro, M., Sommen, F., Struppa, D.C. (eds.) Advances in Hypercomplex Analysis, vol. 1, p. 119. Springer INdAM Series (2013)

  8. Chen, L., Ren, G., Wang, H.: Bicomplex Hermitian Clifford analysis. Front. Math. China 10, 523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, J.E., Shon, K.H.: Properties of regular functions with values in bicomplex numbers. Bull. Korean Math. Soc. 53, 507 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mursaleen, M., Nasiruzzaman, Md, Srivastava, H.M.: Approximation by bicomplex beta operators in compact BC-disks. Math. Methods Appl. Sci. 39, 2916 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Segre, C.: Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici. Math. Ann. 40, 413 (1892)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yaglom, I.M.: A Simple Non-Euclidean Geometry and its Physical Basis. Springer, New York (1979)

    MATH  Google Scholar 

  13. Sobczyk, G.: The hyperbolic number plane. Coll. Math. J. 26, 268 (1995)

    Article  Google Scholar 

  14. Gal, S.G.: Introduction to Geometric Function Theory of Hypercomplex Variables. Nova Science Publishers, New York (2002)

    Google Scholar 

  15. Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. Anal. Univ. Oradea Fasc. Math. 11, 71 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Abłamowicz, R., Lounesto, P., Parra, J.M. (eds.): Clifford Algebras with Numeric and Symbolic Computations. Birkhäuser, Basel (1996)

    MATH  Google Scholar 

  18. Abłamowicz, R., Sobczyk, G. (eds.): Lectures on Clifford (Geometric) Algebras and Applications. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  19. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London (1982)

    MATH  Google Scholar 

  20. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic functions in the plane and n-dimensional space. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  21. Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics 39. Birkhäuser, Boston (2004)

    Book  MATH  Google Scholar 

  22. Girard, P.R.: The quaternion group and modern physics. Eur. J. Phys. 5, 25 (1984)

    Article  Google Scholar 

  23. Majerník, V., Nagy, M.: Quaternionic form of Maxwells equations with sources. Lettere Il Nuovo Cimento 16, 265 (1976)

    Article  MathSciNet  Google Scholar 

  24. Penrose, R.: Twistor Algebra. J. Math. Phys. 8, 345 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Goldman, W.M.: Complex Hyperbolic Geometry. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  26. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gaberdiel, M.R., Gopakumar, R.: Minimal model holography. J. Phys. A Math. Theor. 46, 214002 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ahn, C., Paeng, J.: Higher spin currents in orthogonal Wolf space. Class. Quantum Grav. 32, 045011 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Vasiliev, M.A.: Higher-spin theory and space-time metamorphoses, in modifications of Einstein’s Theory of gravity at large distances. Lect. Notes Phys. 892, 227 (2015)

    Article  ADS  Google Scholar 

  32. Varlamov, V.V.: Spinor Structure and Internal Symmetries. Int. J. Theor. Phys. 54, 3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kisil, V.V.: Geometry of Möbius Transformations. Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  34. Sobczyk, G.: Conformal Mappings in Geometric Algebra. Not. AMS 59, 264 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Frenkel, I., Libine, M.: Anti De Sitter deformation of quaternionic analysis and the second-order pole. Int. Math. Res. Not. 13, 4840 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ulrych, S.: Conformal relativity with hypercomplex variables. Proc. R. Soc. A 470, 20140027 (2014)

    Article  ADS  Google Scholar 

  37. Vahlen, KTh: Über Bewegungen und complexe Zahlen. Mathematische Annalen 55, 585 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ahlfors, L.V.: Möbius Transformations and Clifford Numbers. In: Chavel, I., Farkas, H.M. (eds.) Differential Geometry and Complex Analysis, p. 65. Springer, Berlin (1985)

    Chapter  Google Scholar 

  39. Ahlfors, L.V.: Möbius transformations in \(R^n\) expressed through \(2\times 2\) matrices of clifford numbers. Complex Var. Theory Appl. 5, 215 (1986)

    Article  MATH  Google Scholar 

  40. Hertrich-Jeromin, U.: Introduction to Möbius Differential Geometry. London Math. Soc. L. N. Series, vol. 300. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  41. Maks, J.G.: Modulo (1,1) periodicity of Clifford algebras and the generalized (anti-) Möbius transformations. Delft University of Technology, Thesis (1989)

  42. Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program, Graduate Texts in Mathematics 166. Springer, New York (1997)

    Google Scholar 

  43. Atiyah, M.F., Ward, R.S.: Instantons and algebraic geometry. Commun. Math. Phys. 55, 117 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Penrose, R.: The twistor programme. Rep. Math. Phys. 12, 65 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  45. ’t Hooft, G.: Dimensional Reduction in Quantum Gravity. In: Ali, A., Ellis, J., Randjbar-Daemi, S. (eds.) Salamfestschrift. World Scientific Series in 20th Century Physics, vol. 4. World Scientific, Singapore (1993)

  46. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Bousso, R.: The holographic principle. Rev. Mod. Phys. 74, 825 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Blumenhagen, R., Lüst, D., Theisen, S.: Basic Concepts of String Theory. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  49. Andreescu, T., Andrica, D.: Complex Numbers from A to..Z. Birkhäuser, Boston (2014)

    Book  MATH  Google Scholar 

  50. Zhong, Z.-Z.: On the hyperbolic complex linear symmetry groups and their local gauge transformation actions. J. Math. Phys. 26, 404 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hucks, J.: Hyperbolic complex structures in physics. J. Math. Phys. 34, 5986 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Alpay, D., Luna-Elizarrarás, M.E., Shapiro, M., Struppa, D.C.: Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  53. Obolashvili, E.: Partial differential equations in Clifford analysis, Pitman Monographs and Surveys in Pure and Applied Mathematics 96. Longman, Harlow (1998)

    Google Scholar 

  54. Guidry, M.: Gauge Field Theories: An Introduction with Applications. Wiley, New York (1991)

    Book  Google Scholar 

  55. Atiyah, M., Manton, N.S., Schroers, B.J.: Geometric models of matter. Proc. R. Soc. A 468, 1252 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  56. Kastrup, H.A.: Zur physikalischen Deutung und darstellungstheoretischen Analyse der konformen Transformationen von Raum und Zeit. Annalen der Physik 7, 388 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ulrych.

Additional information

Communicated by Stefan Ulrych

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulrych, S. Conformal Numbers. Adv. Appl. Clifford Algebras 27, 1895–1906 (2017). https://doi.org/10.1007/s00006-016-0741-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-016-0741-3

Keywords

Mathematics Subject Classification

Navigation