Skip to main content
Log in

The Integration of Angular Velocity

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient as naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can be readily solved as part of a larger system of differential equations. Possible generalization to integration in other Lie groups is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, B.P., et al.: The optical properties of gravity. Phys. Rev. Lett. 116, 061102 (2016). doi:10.1103/Phys-RevLett.116.061102

    Article  ADS  Google Scholar 

  2. Blanchet, L.: Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries Living Rev. Relativ. 17(2), 2014. doi:10.12942/lrr-2014-2

  3. Bogfjellmo, G., Marthinsen, H.: High order symplectic partitioned Lie group methods (2013). arXiv:1303.5654 [grqc]

  4. Bottasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Boyle, M.: Angular velocity of gravitational radiation from precessing binaries and the corotating frame. Phys. Rev. D 87, 104006 (2013)

  6. Boyle, M., Lindblom, L., Pfeiffer, H.P., Scheel, M.A., Kidder, L.E.: Phys. Rev. D 75, 024006 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Boyle, M., Kidder, L.E., Ossokine, S., Pfeiffer, H.P.: Gravitational-wave modes from precessing black-hole binaries’ (2014). arXiv:1409.4431 [gr-qc]

  8. Buonanno, A., Chen, Y., Vallisneri, M.: Phys. Rev. D 67, 104025 (2003)

    Article  ADS  Google Scholar 

  9. Candy, L.P.: Kinematics in conformal geometric algebra with applications in strapdown inertial navigation., Ph.D. thesis. University of Cambridge, Great Britain (2012)

  10. Candy, L., Lasenby, J.: Attitude and position tracking. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice, pp. 105–125. Springer London (2011)

  11. Clifford, W.K.: Applications of grassmann’s extensive algebra. Am. J. Math. 1, 350 (1878)

  12. Crouch, P.E., Grossman, R.: J. Nonlinear Sci. 3, 1 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  13. Crowe, M.J.: A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. Dover, New York (1985)

    MATH  Google Scholar 

  14. Doran, C., Lasenby, A.: Geometric algebra for physicists, 4th edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  15. Doran, C., Hestenes, D., Sommen, F., Acker, N.V.: Lie groups as spin groups. J. Math. Phys. 34, 3642 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Duistermaat, J.J., Kolk, J.A.C.: Lie Groups. Springer, Berlin (2000) (see Sec. 1.5)

  17. Grandclément, P., Ihm, M., Kalogera, V., Belczynski, K.: Searching for gravitational waves from the inspiral of precessing binary systems: astrophysical expectations and detection efficiency of “spiky” templates. Phys. Rev. D 69, 102002 (2004)

    Article  ADS  Google Scholar 

  18. Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph Tools 3, 29 (1998)

    Article  Google Scholar 

  19. Hairer, E., Wanner, G., Nørsett, S.P.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1993)

    MATH  Google Scholar 

  20. Hairer, E., Wanner, G., Lubich, C.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  21. Hall, B.: Lie Groups, Lie Algebras, and Representations, Graduate Texts in Mathematics, vol. 222. Springer International Publishing (2015)

  22. Hatcher, A.: Algebraic Topology, 1st edn. Cambridge University Press, New York (2001)

    MATH  Google Scholar 

  23. Hestenes, D.: Celestial mechanics with geometric algebra. Celestial Mech. 30, 151 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Kluwer Academic Publishers, Norwell (1987)

    MATH  Google Scholar 

  25. Ignagni, M.B.: Optimal strapdown attitude integration algorithms. J. Guid. Control Dyn. 13, 363 (1990)

    Article  ADS  MATH  Google Scholar 

  26. Ignagni, M.B.: Errata: Optimal strapdown attitude integration algorithms. J. Guid. Control Dyn. 13, 0576b (1990)

  27. Ignagni, M.B.: Efficient class of optimized coning compensation algorithms. J. Guid. Control Dyn. 19, 424 (1996)

    Article  ADS  MATH  Google Scholar 

  28. Johnson, S.M., Williams, J.R., Cook, B.K.: Quaternion-based rigid body rotation integration algorithms for use in particle methods. Int. J. Numer. Methods Eng. 74, 1303 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jones, E., Oliphant, T., Peterson, P. et al.: SciPy: open source scientific tools for Python (online) (2001). Accessed 11 March 2016

  30. Kalogera, V.: Spin-orbit misalignment in close binaries with two compact objects. Astrophys J 541, 319 (2000)

    Article  ADS  Google Scholar 

  31. Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. L. S. Collaboration; V. Collaboration.: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class. Quantum Gravity 27, 173001 (2010)

  33. Lew, A., Marsden, J.E., Ortiz, M., West, M.: Variational time integrators. Int. J. Numer. Methods Eng. 60, 153 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin, X., Ng, T.: Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling. Int. J. Numer. Anal. Methods Geomech. 19, 653 (1995)

    Article  MATH  Google Scholar 

  35. Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  36. McRobie, F.A., Lasenby, J.: Simo-Vu Quoc rods using Clifford algebra. Int. J. Numer. Methods Eng. 45, 377 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Miller, W.: Symmetry Groups and Their Applications, Pure and Applied Mathematics. Academic Press, New York (1972) (see Lemma 5.3)

  38. Miller, R.B.: A new strapdown attitude algorithm. J. Guid. Control Dyn. 6, 287 (1983)

    Article  ADS  Google Scholar 

  39. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, 1st edn. W.H. Freeman, San Francisco (1973)

    Google Scholar 

  40. Munjiza, A., Latham, J.P., John, N.W.M.: Dynamics of discrete element systems comprising irregular discrete elements—integration solution for finite rotations in 3D. Int. J. Numer. Methods Eng. 56, 35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Munthe-Kaas, H.: Proceedings of the NSF/CBMS regional conference on numerical analysis of Hamiltonian differential equations. Appl. Numer. Math. 29, 115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. O’Shaughnessy, R., Kaplan, J., Kalogera, V., Belczynski, K.: Bounds on expected black hole spins in inspiraling binaries. Astrophys. J. 632, 1035 (2005)

    Article  ADS  Google Scholar 

  43. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  44. Shivarama, R., Fahrenthold, E.P.: Hamilton’s equations with Euler parameters for rigid body dynamics modeling. J. Dyn. Syst. Meas. Control 126, 124 (2004)

    Article  MATH  Google Scholar 

  45. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Comput. Methods Appl. Mech. Eng. 49, 55 (1985)

    Article  ADS  MATH  Google Scholar 

  46. Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31, 19 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stoer , J., Bulirsch, R.: Introduction to Numerical Analysis, Texts in Applied Mathematics, vol. 12. Springer, New York (2002)

  48. Treven, A., Saje, M.: Integrating rotation and angular velocity from curvature. Adv. Eng. Softw. 85, 26 (2015)

    Article  Google Scholar 

  49. Vold, T.G.: Introduction to geometric algebra with an application to rigid body mechanics. Am. J. Phys. 61, 491 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wald, R.M.: General Relativity, 1st edn. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  51. Walton, O.R., Braun, R.L.: Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters. In: Plasynski, S.I., Peters, W.C., Roco, M.C. (eds.) Flow of Particulates and Fluids: Proceedings, Joint DOE/NSF Workshop on Flow of Particulates and Fluids, Ithaca. National Technical Information Service (1993)

  52. Woodman, O.J.: An Introduction to Inertial Navigation, Technical Report UCAM-CL-TR-696. University of Cambridge, Computer Laboratory, Cambridge (2007)

    Google Scholar 

  53. Wu, D., Wang, Z.: Strapdown inertial navigation system algorithms based on geometric algebra. Adv. Appl. Clifford Algebras 22, 1151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zupan, E., Saje, M.: Integrating rotation from angular velocity. Adv. Eng. Softw. 42, 723 (2011)

    Article  MATH  Google Scholar 

  55. Zupan, E., Zupan, D.: On higher order integration of angular velocities using quaternions. Mech. Res. Commun. 55, 77 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

It is my pleasure to thank Scott Field, Larry Kidder, and Saul Teukolsky for useful conversations, as well as Nils Deppe for particularly enlightening discussions of stiffness and numerical integrators. I also appreciate Eva Zupan and Miran Saje for useful comments on their papers, and for pointing out more recent references. This project was supported in part by the Sherman Fairchild Foundation, and by NSF Grant Nos. PHY-1306125 and AST-1333129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Boyle.

Additional information

Communicated by Leo Dorst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, M. The Integration of Angular Velocity. Adv. Appl. Clifford Algebras 27, 2345–2374 (2017). https://doi.org/10.1007/s00006-017-0793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0793-z

Navigation