Skip to main content
Log in

Analyzing the angular acceleration vector of a moving rigid body

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents a novel and systematic approach for obtaining the angular acceleration vector of a moving rigid body. The novelty of the proposed method lies in the particular form of writing the pose of the moving rigid body, as well as in the procedure to compute its time derivatives. The derivation process goes directly to the very foundations of rotational motion and exploits the phenomenological connection between orientation, angular velocity, angular acceleration, and spatial motion of a rigid body. Hence, as a remarkable result, a symbolic expression for the angular acceleration vector arises naturally without the need to solve the inverse acceleration problem. The novel and general expression of the angular acceleration vector involves relationships between the position, velocity, and acceleration vectors of three non-collinear points of the body, which can be easily understood and physically interpreted without particular knowledge of specialized techniques or advanced mathematical tools. Due to its vector nature, the expression for the angular acceleration vector proposed in this paper is relatively simple, as well as, it is very robust against computational singularities. Two fully detailed case studies demonstrate the robustness of the proposed angular acceleration vector compared with other expressions appearing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. It should be noted that Eq. (8) can be equivalently written as \({\textbf{r}}_{P/O} = {\textbf{p}}_1 + {\textbf{R}} \, {\textbf{r}}\), where the \((3 \times 3)\) matrix \({\textbf{R}} \equiv [{{\textbf{u}}} \,\, {{\textbf{v}}} \,\, {{\textbf{w}}}]\) describes the orientation of the rigid body with respect to reference frame XYZ, and \({\textbf{r}} \equiv (u, v, w)^T\).

References

  1. Euler L (1775) Nova methodus motum corporum rigidorum determinandi. Novi Commentari Acad Imp Petrop 20:208–238

    Google Scholar 

  2. Rodrigues O (1840) Des lois géométriques qui régissent les déplacements d’un systéme solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produir. J Math 5:380–440

    Google Scholar 

  3. Shuster MD (1993) A survey of attitude representations. J Astron Sci 41(4):439–517

    MathSciNet  Google Scholar 

  4. Trindade MA, Sampaio R (2000) Uma Revisão sobre a Parametrização de Rotações Finitas na Dinâmica de Corpos Rígidos. J Braz Soc Mech Sci 222(2):341–377

    Article  Google Scholar 

  5. Caparrini S (2002) The discovery of the vector representation of moments and angular velocity. Arch Hist Exact Sci 56:151–181

    Article  MathSciNet  Google Scholar 

  6. Condurache D (2022) Higher-order relative kinematics of rigid body and multibody systems. A novel approach with real and dual lie algebras. Mech Mach Theory 176:1–27

    Article  Google Scholar 

  7. Mohamed MG (1997) Kinematics of rigid bodies in general spatial motion: second-order motion properties. Appl Math Model 21(8):471–479

    Article  Google Scholar 

  8. McGill DJ, King WW (1984) Engineering mechanics: an introduction to dynamics, Brooks/Cole Engineering Division, pp  490–492

  9. Hassani A, Khalilpour SA, Bataleblu A, Taghirad HD (2022) Full dynamic model of 3-UPU translational parallel manipulator for model-based control schemes. Robotica 40(8):2815–2830

    Article  Google Scholar 

  10. Lewkowiciz R, Kowaleczko G (2019) An inverse kinematic model of the human training centrifuge motion simulator. J Theor Appl Mech 57(1):99–113

    Article  Google Scholar 

  11. Matuszek DB, Bilos LA (2021) Computer image analysis as a method of evaluating the quality of selected fine-grained food mixtures. Sustainability 13(3018):1–14

    Google Scholar 

  12. Carlsen RW, Fawzi AL, Wan F, Kesari H, Franck C (2021) A quatitative relationship between rotational head kinematics and brain tissue strain from a 2-D parametric finite element analysis. Brain Multiphys 2(100024):1–14

    Google Scholar 

  13. Condurache D, Matcovschi MH (2001) Algebraic computation of the twist of a rigid body through direct measurements. Comput Methods Appl Mech Eng 190:5357–5376

    Article  Google Scholar 

  14. Field P, Ziwet A (1916) The accelerations of the points of a rigid body. Am Math Mon 23(10):371–381

    Article  MathSciNet  Google Scholar 

  15. Soutas-Little RW, Inman DJ (1999) Engineering mechanics: dynamics. Prentice-Hall Inc, USA, pp 386–387

    Google Scholar 

  16. Wittenburg J (2008) Dynamics of multibody systems, 2nd edn. Springer, Cambridge, pp 23–26

    Google Scholar 

  17. Wittenburg J (2016) Kinematics. Springer, UK, pp 316–317

    Book  Google Scholar 

  18. Angeles J (1987) Computation of rigid-body angular acceleration from point-acceleration measurements. ASME J Dyn Syst Meas Control 109:124–127

    Article  Google Scholar 

  19. Angeles J (1999) The angular-acceleration tensor of rigid-body kinematics and its properties. Arch Appl Mech 69:204–214

    Article  Google Scholar 

  20. Angeles J (2014) Fundamentals of robotic mechanical systems, 4th edn. Springer, New York, pp 362–368

    Book  Google Scholar 

  21. Condurache D, Matcovschi M (2002) Computation of angular velocity and acceleration tensors by direct measurements. Acta Mech 153:147–167

    Article  Google Scholar 

  22. Cervantes-Sánchez JJ, Rico-Martínez JM, Pérez-Muñoz VH (2014) On the angular velocity of a rigid body: matrix and vector representations. Eur J Mech A/Solids 45:123–132

    Article  MathSciNet  Google Scholar 

  23. Rico-Martínez JM, Duffy J (1996) An application of screw algebra to the acceleration analysis of serial chains. Mech Mach Theory 31(4):445–457

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the National Council of Humanities, Science and Technology of México (CONAHCYT) for supporting this research through SNI (National System of Researchers) fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jesús Cervantes-Sánchez.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The objective of this appendix is to present a detailed derivation of the nine vector terms \(\dot{{\textbf{n}}}_1, \dot{{\textbf{n}}}_2, \cdots \dot{{\textbf{n}}}_9\) involved into Eq. (30). To this end, the general idea is to include only \({\textbf{u}}\), \(\dot{{\textbf{u}}}\), \(\ddot{{\textbf{u}}}\), \({\textbf{m}}\), \(\dot{{\textbf{m}}}\), and \(\ddot{{\textbf{m}}}\), since these vectors are directly related to the position, the velocity, and the acceleration of the three non-collinear points of the moving rigid body under analysis.

  1. (1)

    Computation of the first term, \(\dot{{\textbf{n}}}_1\).

The first term, namely, \(\dot{{\textbf{n}}}_1\), has been previously defined in Eq. (30), and it may be handled as follows:

$$\begin{aligned}{} & {} \dot{{\textbf{n}}}_1 \equiv (\ddot{{\textbf{v}}} \! \cdot \! {{\textbf{w}}}) {\textbf{u}} = \{ (k_1 \ddot{{\textbf{m}}} - k_2 \ddot{{\textbf{u}}}) \cdot ({\textbf{u}} \times {\textbf{v}}) \} {\textbf{u}} \nonumber \\{} & {} \quad = k_1 \{ \ddot{{\textbf{m}}} \cdot ({\textbf{u}} \times {\textbf{v}}) \} {\textbf{u}} - k_2 \{ \ddot{{\textbf{u}}} \cdot ({\textbf{u}} \times {\textbf{v}}) \} {\textbf{u}}. \end{aligned}$$
(89)

By using vector product identities, we have that:

$$\begin{aligned}{} & {} ({\textbf{u}} \!\times \! {\textbf{v}}) \!\times \! ({\textbf{u}} \!\times \! \ddot{{\textbf{m}}}) = \{ \ddot{{\textbf{m}}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{v}}) \} {\textbf{u}} - \{ {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{v}}) \} \ddot{{\textbf{m}}} \nonumber \\{} & {} \quad = \{ \ddot{{\textbf{m}}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{v}}) \} {\textbf{u}}, \,\,\, {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{v}}) = 0. \end{aligned}$$
(90)
$$\begin{aligned}{} & {} ({\textbf{u}} \!\times \! {\textbf{v}}) \!\times \! ({\textbf{u}} \!\times \! \ddot{{\textbf{u}}}) = \{ \ddot{{\textbf{u}}} \cdot ({\textbf{u}} \!\times \! {\textbf{v}}) \} {\textbf{u}} - \{ {\textbf{u}} \cdot ({\textbf{u}} \!\times \! {\textbf{v}}) \} \ddot{{\textbf{u}}}\nonumber \\{} & {} \quad = \{ \ddot{{\textbf{u}}} \cdot ({\textbf{u}} \!\times \! {\textbf{v}}) \} {\textbf{u}}, \,\,\, {\textbf{u}} \cdot ({\textbf{u}} \!\times \! {\textbf{v}}) = 0. \end{aligned}$$
(91)

where

$$\begin{aligned} {\textbf{u}} \!\times \! {\textbf{v}} = {\textbf{u}} \!\times \! ( k_1 {\textbf{m}} - k_2 {\textbf{u}}) = k_1 ({\textbf{u}} \!\times \! {\textbf{m}}) - k_2 ({\textbf{u}} \!\times \! {\textbf{u}}) = k_1 ({\textbf{u}} \!\times \! {\textbf{m}}), \,\,\, {\textbf{u}} \!\times \! {\textbf{u}} = {\textbf{0}}. \end{aligned}$$
(92)

In this way, according to the rules of cross vector products, Eq. (89) may be written as follows:

$$\begin{aligned} \dot{{\textbf{n}}}_1 = k_1^2 \, (\ddot{{\textbf{m}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! {{\textbf{m}}}) - k_1 k_2 \, (\ddot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! {{\textbf{m}}}). \end{aligned}$$
(93)
  1. (2)

    Computation of the second term, \(\dot{{\textbf{n}}}_2\).

The algebraic handling of the second term, namely, \(\dot{{\textbf{n}}}_2\), is described below:

$$\begin{aligned} \dot{{\textbf{n}}}_2 \equiv (\dot{{\textbf{v}}} \! \cdot \! \dot{{{\textbf{w}}}}) {\textbf{u}} = \{ (k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}} ) \cdot (\dot{{\textbf{u}}} \times {\textbf{v}} + {\textbf{u}} \times \dot{{\textbf{v}}}) \} {\textbf{u}} \end{aligned}$$
(94)

where

$$\begin{aligned}{} & {} \dot{{\textbf{u}}} \times {\textbf{v}} = \dot{{\textbf{u}}} \times ( k_1 {\textbf{m}} - k_2 {\textbf{u}}) = k_1 (\dot{{\textbf{u}}} \times {\textbf{m}}) - k_2 (\dot{{\textbf{u}}} \times {\textbf{u}}) \end{aligned}$$
(95)
$$\begin{aligned}{} & {} {\textbf{u}} \times \dot{{\textbf{v}}} = {{\textbf{u}}} \times ( k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}}) = k_1 ({{\textbf{u}}} \times \dot{{\textbf{m}}}) - k_2 ({{\textbf{u}}} \times \dot{{\textbf{u}}}) \end{aligned}$$
(96)

Thus, vector \(\dot{{\textbf{n}}}_2\) becomes:

$$\begin{aligned} \dot{{\textbf{n}}}_2 = k_1^2 \, \{ \dot{{\textbf{m}}} \cdot (\dot{{\textbf{u}}} \times {\textbf{m}} ) \} {\textbf{u}} - k_1 k_2 \, \{ \dot{{\textbf{u}}} \cdot ( {{\textbf{u}}} \times \dot{{\textbf{m}}} ) \} {\textbf{u}} \end{aligned}$$
(97)

Next, by resorting to the following vector product identity, it is found that:

$$\begin{aligned}{} & {} (\dot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \!=\! \{ \dot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \} {\textbf{u}} \!-\! \{ {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \} \dot{{\textbf{u}}} \nonumber \\{} & {} \quad \!=\! \{ \dot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \} {\textbf{u}}, \,\, {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \!=\! 0. \end{aligned}$$
(98)

Therefore, it is finally obtained that:

$$\begin{aligned} \dot{{\textbf{n}}}_2 = k_1^2 \, \{ \dot{{\textbf{m}}} \cdot (\dot{{\textbf{u}}} \times {\textbf{m}} ) \} {\textbf{u}} - k_1 k_2 \, (\dot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}). \end{aligned}$$
(99)
  1. (3)

    Computation of the third term, \(\dot{{\textbf{n}}}_3\).

This section shows the computation of the third term, namely, \(\dot{{\textbf{n}}}_3\). The process begins with the following expression:

$$\begin{aligned} \dot{{\textbf{n}}}_3 \equiv (\dot{{\textbf{v}}} \! \cdot \! {{\textbf{w}}}) \dot{{\textbf{u}}} = \{ (k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}} ) \cdot ({\textbf{u}} \times {\textbf{v}}) \} \dot{{\textbf{u}}} \end{aligned}$$
(100)

where

$$\begin{aligned} {\textbf{u}} \!\times \! {\textbf{v}} = {\textbf{u}} \!\times \! ( k_1 {\textbf{m}} - k_2 {\textbf{u}}) = k_1 ({\textbf{u}} \!\times \! {\textbf{m}}) - k_2 ({\textbf{u}} \!\times \! {\textbf{u}}) = k_1 ({\textbf{u}} \!\times \! {\textbf{m}}), \,\,\, {\textbf{u}} \!\times \! {\textbf{u}} = {\textbf{0}}. \end{aligned}$$
(101)

Then, the third term can be expressed as:

$$\begin{aligned} \dot{{\textbf{n}}}_3 = k_1^2 \, \{ \dot{{\textbf{m}}} \cdot ({{\textbf{u}}} \times {\textbf{m}} ) \} \dot{{\textbf{u}}} - k_1 k_2 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times {\textbf{m}} ) \} \dot{{\textbf{u}}}. \end{aligned}$$
(102)
  1. (4)

    Computation of the fourth term, \(\dot{{\textbf{n}}}_4\).

The algebraic manipulation of the fourth term is as follows:

$$\begin{aligned}{} & {} \dot{{\textbf{n}}}_4 \equiv (\ddot{{\textbf{u}}} \! \cdot \! {\textbf{w}}) {\textbf{v}} = \{ \ddot{{\textbf{u}}} \cdot ({\textbf{u}} \times {\textbf{v}}) \} {\textbf{v}} = \{ \ddot{{\textbf{u}}} \cdot ( k_1 {\textbf{u}} \times {\textbf{m}}) \} ( k_1 {\textbf{m}} - k_2 {\textbf{u}}) \nonumber \\{} & {} \dot{{\textbf{n}}}_4 = k_1^2 \, \{ \ddot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times {\textbf{m}} ) \} {{\textbf{m}}} - k_1 k_2 \, \{ \ddot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times {\textbf{m}} ) \} {{\textbf{u}}}. \end{aligned}$$
(103)

Recalling the following vector product identities:

$$\begin{aligned}{} & {} \!\!\!\!\!\! (\ddot{{\textbf{u}}} \!\times \! {\textbf{m}}) \!\times \! ({\textbf{u}} \!\times \! {{\textbf{m}}}) \!=\! \{ \ddot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \} {\textbf{m}} \!-\! \{ {\textbf{m}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \} \ddot{{\textbf{u}}} \!=\! \{ \ddot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \} {\textbf{m}}, \,\, {\textbf{m}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \!=\! 0. \end{aligned}$$
(104)
$$\begin{aligned}{} & {} \!\!\!\!\!\! (\ddot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! {{\textbf{m}}}) \!=\! \{ \ddot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \} {\textbf{u}} \!-\! \{ {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \} \ddot{{\textbf{u}}} \!=\! \{ \ddot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \} {\textbf{u}}, \,\, {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! {\textbf{m}}) \!=\! 0. \end{aligned}$$
(105)

Having laid the necessary groundwork, we get the following result:

$$\begin{aligned} \dot{{\textbf{n}}}_4 = k_1^2 \, (\ddot{{\textbf{u}}} \!\times \! {\textbf{m}}) \!\times \! ({\textbf{u}} \!\times \! {{\textbf{m}}}) - k_1 k_2 \, (\ddot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! {{\textbf{m}}}). \end{aligned}$$
(106)
  1. (5)

    Computation of the fifth term, \(\dot{{\textbf{n}}}_5\).

The fifth term can be formulated in a way that yields a convenient vector expression, which starts with the relation:

$$\begin{aligned}{} & {} \dot{{\textbf{n}}}_5 \equiv (\dot{{\textbf{u}}} \! \cdot \! \dot{{\textbf{w}}}){\textbf{v}} = \{ \dot{{\textbf{u}}} \cdot (\dot{{\textbf{u}}} \times {\textbf{v}} + {\textbf{u}} \times \dot{{\textbf{v}}}) \} {\textbf{v}} = \{ \dot{{\textbf{u}}} \cdot (\dot{{\textbf{u}}} \times {\textbf{v}}) + \dot{{\textbf{u}}} \cdot ({\textbf{u}} \times \dot{{\textbf{v}}}) \} {\textbf{v}} \nonumber \\{} & {} \dot{{\textbf{n}}}_5 = \{ \dot{{\textbf{u}}} \cdot ({\textbf{u}} \times \dot{{\textbf{v}}}) \} {\textbf{v}}, \,\,\, \dot{{\textbf{u}}} \cdot (\dot{{\textbf{u}}} \times {\textbf{v}}) = 0. \end{aligned}$$
(107)

where

$$\begin{aligned}{} & {} \!\!\!\!\!\!\!\! {\textbf{u}} \times \dot{{\textbf{v}}} = {\textbf{u}} \times (k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}} ) = k_1 ({\textbf{u}} \times \dot{{\textbf{m}}}) - k_2 ({\textbf{u}} \times \dot{{\textbf{u}}}) \end{aligned}$$
(108)
$$\begin{aligned}{} & {} \!\!\!\!\!\!\!\! \dot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{v}}}) \!=\! k_1 \{ \dot{{\textbf{u}}} \!\cdot \! ({{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \} \!-\! k_2 \{ \dot{{\textbf{u}}} \!\cdot \! ({{\textbf{u}}} \!\times \! \dot{{\textbf{u}}} ) \} \!=\! k_1 \{ \dot{{\textbf{u}}} \!\cdot \! ({{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \}, \,\, \dot{{\textbf{u}}} \!\cdot \! ({{\textbf{u}}} \!\times \! \dot{{\textbf{u}}} ) \!=\! 0. \end{aligned}$$
(109)

Then Eq. (107) becomes:

$$\begin{aligned} \dot{{\textbf{n}}}_5 = k_1 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \} ( k_1 {\textbf{m}} - k_2 {\textbf{u}} ) = k_1^2 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times \dot{{\textbf{m}}} ) \} {{\textbf{m}}} - k_1 k_2 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times \dot{{\textbf{m}}} ) \} {{\textbf{u}}}. \end{aligned}$$
(110)

To complete the reduction process, we now use the well-known vector product identity:

$$\begin{aligned} (\dot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \!=\! \{ \dot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \} {\textbf{u}} - \{ {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \} \dot{{\textbf{u}}} \!=\! \{ \dot{{\textbf{u}}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) \} {\textbf{u}}, \,\, {\textbf{u}} \!\cdot \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}) = 0. \end{aligned}$$
(111)

Thus, the sought expression is, therefore:

$$\begin{aligned} \dot{{\textbf{n}}}_5 = k_1^2 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times \dot{{\textbf{m}}} ) \} {{\textbf{m}}} - k_1 k_2 \, (\dot{{\textbf{u}}} \!\times \! {\textbf{u}}) \!\times \! ({\textbf{u}} \!\times \! \dot{{\textbf{m}}}). \end{aligned}$$
(112)
  1. (6)

    Computation of the sixth term, \(\dot{{\textbf{n}}}_6\).

In this section, we examine another means of expressing the so-called sixth term. To this end, in the first instance, we have the following equation:

$$\begin{aligned}{} & {} \dot{{\textbf{n}}}_6 \equiv (\dot{{\textbf{u}}} \! \cdot \! {\textbf{w}}) \dot{{\textbf{v}}} = \{ \dot{{\textbf{u}}} \! \cdot \! ({\textbf{u}} \times {\textbf{v}}) \} \dot{{\textbf{v}}} = \{ \dot{{\textbf{u}}} \! \cdot \! ( k_1 {\textbf{u}} \times {{\textbf{m}}}) \} \dot{{\textbf{v}}} \nonumber \\{} & {} \quad = \{ \dot{{\textbf{u}}} \! \cdot \! ( k_1 {\textbf{u}} \times {{\textbf{m}}}) \} (k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}} ) \end{aligned}$$
(113)

and, after some vector algebra, we obtain the final result given by:

$$\begin{aligned} \dot{{\textbf{n}}}_6 = k_1^2 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times {\textbf{m}} ) \} \dot{{\textbf{m}}} - k_1 k_2 \, \{ \dot{{\textbf{u}}} \cdot ({{\textbf{u}}} \times {\textbf{m}} ) \} \dot{{\textbf{u}}}. \end{aligned}$$
(114)
  1. (7)

    Computation of the seventh term, \(\dot{{\textbf{n}}}_7\).

In this section, we analyze the mathematical form associated with the seventh term described in Eq. (30), namely:

$$\begin{aligned}{} & {} \!\!\!\!\!\!\!\! \dot{{\textbf{n}}}_7 \equiv (\ddot{{\textbf{u}}} \! \cdot \! {{\textbf{v}}}) {\textbf{w}} = \{ \ddot{{\textbf{u}}} \! \cdot \! ( k_1 {\textbf{m}} - k_2 {\textbf{u}} ) \} {\textbf{w}} = \{ \ddot{{\textbf{u}}} \! \cdot \! ( k_1 {\textbf{m}} - k_2 {\textbf{u}} ) \} ({\textbf{u}} \times {\textbf{v}}) \nonumber \\{} & {} \!\!\!\!\!\!\!\! \dot{{\textbf{n}}}_7 \!=\! \{ \ddot{{\textbf{u}}} \! \cdot \! ( k_1 {\textbf{m}} - k_2 {\textbf{u}} ) \} (k_1 {\textbf{u}} \times {{\textbf{m}}} ) \!=\! k_1^2 \, ( \ddot{{\textbf{u}}} \cdot {{\textbf{m}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ) \!-\! k_1 k_2 \, ( \ddot{{\textbf{u}}} \cdot {{\textbf{u}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ) \end{aligned}$$
(115)

The first term of the above equation may be conveniently transformed by the following vector identity:

$$\begin{aligned} \ddot{{\textbf{u}}} \times \{ ( {\textbf{u}} \times {{\textbf{m}}} ) \times {{\textbf{m}}} \} = ( \ddot{{\textbf{u}}} \cdot {{\textbf{m}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ) - \{\ddot{{\textbf{u}}} \cdot ( {\textbf{u}} \times {{\textbf{m}}} ) \} {\textbf{m}} \end{aligned}$$
(116)

Thus, the seventh term is given by:

$$\begin{aligned} \dot{{\textbf{n}}}_7 = k_1^2 \, \ddot{{\textbf{u}}} \times \{ ( {\textbf{u}} \times {{\textbf{m}}} ) \times {{\textbf{m}}} \} + k_1^2 \, \{\ddot{{\textbf{u}}} \cdot ( {\textbf{u}} \times {{\textbf{m}}} ) \} {\textbf{m}} - k_1 k_2 \, ( \ddot{{\textbf{u}}} \cdot {{\textbf{u}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ). \end{aligned}$$
(117)
  1. (8)

    Computation of the eighth term, \(\dot{{\textbf{n}}}_8\).

We now consider an alternative derivation of the formula for the eighth term that was previously defined. The procedure is as follows:

$$\begin{aligned}{} & {} \!\!\!\!\!\!\!\! \dot{{\textbf{n}}}_8 \equiv (\dot{{\textbf{u}}} \! \cdot \! \dot{{{\textbf{v}}}}) {\textbf{w}} = \{ \dot{{\textbf{u}}} \! \cdot \! (k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}} ) \} {\textbf{w}} = \{ \dot{{\textbf{u}}} \! \cdot \! (k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}} ) \} ({\textbf{u}} \times {\textbf{v}}) \nonumber \\{} & {} \!\!\!\!\!\!\!\! \dot{{\textbf{n}}}_8 \!=\! \{ \dot{{\textbf{u}}} \! \cdot \! (k_1 \dot{{\textbf{m}}} \!-\! k_2 \dot{{\textbf{u}}} ) \} (k_1 {\textbf{u}} \!\times \! {{\textbf{m}}}) \!=\! k_1^2 ( \dot{{\textbf{u}}} \cdot \dot{{\textbf{m}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ) \!-\! k_1 k_2 ( \dot{{\textbf{u}}} \!\cdot \! \dot{{\textbf{u}}} ) ( {\textbf{u}} \!\times \! {{\textbf{m}}} ) \end{aligned}$$
(118)

To get a more convenient form of the first term of the above equation, we resort to the following vector identity:

$$\begin{aligned} \dot{{\textbf{u}}} \times \{ ( {\textbf{u}} \times {{\textbf{m}}} ) \times \dot{{\textbf{m}}} \} = ( \dot{{\textbf{u}}} \cdot \dot{{\textbf{m}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ) - \{\dot{{\textbf{u}}} \cdot ( {\textbf{u}} \times {{\textbf{m}}} ) \} \dot{{\textbf{m}}} \end{aligned}$$
(119)

Therefore, the eighth term gets the following form:

$$\begin{aligned} \dot{{\textbf{n}}}_8 = k_1^2 \, \dot{{\textbf{u}}} \times \{ ( {\textbf{u}} \times {{\textbf{m}}} ) \times \dot{{\textbf{m}}} \} + k_1^2 \, \{\dot{{\textbf{u}}} \cdot ( {\textbf{u}} \times {{\textbf{m}}} ) \} \dot{{\textbf{m}}} - k_1 k_2 \, ( \dot{{\textbf{u}}} \cdot \dot{{\textbf{u}}} ) ( {\textbf{u}} \times {{\textbf{m}}} ). \end{aligned}$$
(120)
  1. (9)

    Computation of the ninth term, \(\dot{{\textbf{n}}}_9\).

This section is dedicated to finding an alternative formula for the ninth term defined in Eq. (30). This term can be expressed as:

$$\begin{aligned} \dot{{\textbf{n}}}_9 \equiv (\dot{{\textbf{u}}} \! \cdot \! {{\textbf{v}}}) \dot{{\textbf{w}}} = \{ \dot{{\textbf{u}}} \! \cdot \! ( k_1 {\textbf{m}} - k_2 {\textbf{u}} ) \} \dot{{\textbf{w}}} = \{ k_1 ( \dot{{\textbf{u}}} \! \cdot {\textbf{m}} ) - k_2 ( \dot{{\textbf{u}}} \! \cdot {\textbf{u}} ) \} (\dot{{\textbf{u}}} \times {\textbf{v}} + {\textbf{u}} \times \dot{{\textbf{v}}}) \end{aligned}$$
(121)

where

$$\begin{aligned}{} & {} \dot{{\textbf{u}}} \times {\textbf{v}} = \dot{{\textbf{u}}} \times ( k_1 {\textbf{m}} - k_2 {\textbf{u}}) = k_1 (\dot{{\textbf{u}}} \times {\textbf{m}}) - k_2 (\dot{{\textbf{u}}} \times {\textbf{u}}) \end{aligned}$$
(122)
$$\begin{aligned}{} & {} {\textbf{u}} \times \dot{{\textbf{v}}} = {{\textbf{u}}} \times ( k_1 \dot{{\textbf{m}}} - k_2 \dot{{\textbf{u}}}) = k_1 ({{\textbf{u}}} \times \dot{{\textbf{m}}}) - k_2 ({{\textbf{u}}} \times \dot{{\textbf{u}}}) \end{aligned}$$
(123)
$$\begin{aligned}{} & {} \dot{{\textbf{u}}} \! \cdot {\textbf{u}} = 0, \quad \dot{{\textbf{u}}} \times {\textbf{u}} = -{{\textbf{u}}} \times \dot{{\textbf{u}}}. \end{aligned}$$
(124)

From these relationships, we have that:

$$\begin{aligned} \dot{{\textbf{n}}}_9 = k_1^2 \, ( \dot{{\textbf{u}}} \cdot {\textbf{m}} ) ( \dot{{\textbf{u}}} \times {{\textbf{m}}} ) + k_1^2 \, ( \dot{{\textbf{u}}} \cdot {\textbf{m}} ) ( {{\textbf{u}}} \times \dot{{\textbf{m}}} ). \end{aligned}$$
(125)

The algebraic process continues using the following two vector identities:

$$\begin{aligned}{} & {} \!\!\!\!\!\!\!\!\!\!\! \dot{{\textbf{u}}} \!\times \! \{ ( \dot{{\textbf{u}}} \!\times \! {{\textbf{m}}} ) \!\times \! {{\textbf{m}}} \} \!=\! ( \dot{{\textbf{u}}} \!\cdot \! {{\textbf{m}}} ) ( \dot{{\textbf{u}}} \!\times \! {{\textbf{m}}} ) \!-\! \{\dot{{\textbf{u}}} \!\cdot \! ( \dot{{\textbf{u}}} \!\times \! {{\textbf{m}}} ) \} {{\textbf{m}}} \nonumber \\{} & {} \quad \!=\! ( \dot{{\textbf{u}}} \!\cdot \! {{\textbf{m}}} ) ( \dot{{\textbf{u}}} \!\times \! {{\textbf{m}}} ), \, \dot{{\textbf{u}}} \!\cdot \! ( \dot{{\textbf{u}}} \!\times \! {{\textbf{m}}} ) \!=\! 0. \end{aligned}$$
(126)
$$\begin{aligned}{} & {} \!\!\!\!\!\!\!\!\!\!\! \dot{{\textbf{u}}} \!\times \! \{ ( {{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \!\times \! {{\textbf{m}}} \} \!=\! ( \dot{{\textbf{u}}} \!\cdot \! {{\textbf{m}}} ) ( {{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \!-\! \{\dot{{\textbf{u}}} \!\cdot \! ( {{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \} {{\textbf{m}}}. \end{aligned}$$
(127)

By using the foregoing identities it is obtained the final result given by:

$$\begin{aligned} \dot{{\textbf{n}}}_9 = k_1^2 \, \dot{{\textbf{u}}} \!\times \! \{ ( \dot{{\textbf{u}}} \!\times \! {{\textbf{m}}} ) \!\times \! {{\textbf{m}}} \} + k_1^2 \, \dot{{\textbf{u}}} \!\times \! \{ ( {{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \!\times \! {{\textbf{m}}} \} + k_1^2 \, \{\dot{{\textbf{u}}} \!\cdot \! ( {{\textbf{u}}} \!\times \! \dot{{\textbf{m}}} ) \} {{\textbf{m}}}. \end{aligned}$$
(128)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cervantes-Sánchez, J.J., Rico-Martínez, J.M., García-Murillo, M.A. et al. Analyzing the angular acceleration vector of a moving rigid body. Meccanica 59, 89–106 (2024). https://doi.org/10.1007/s11012-023-01741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01741-7

Keywords

Navigation