Skip to main content
Log in

Cyclic Structures of Cliffordian Supergroups and Particle Representations of Spin+(1, 3)

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

Supergroups are defined in the framework of \({\mathbb{Z}_2}\) 2-graded Clifford algebras over the fields of real and complex numbers, respectively. It is shown that cyclic structures of complex and real supergroups are defined by Brauer-Wall groups related with the modulo 2 and modulo 8 periodicities of the complex and real Clifford algebras. Particle (fermionic and bosonic) representations of a universal covering (spinor group Spin +(1, 3)) of the proper orthochronous Lorentz group are constructed via the Clifford algebra formalism. Complex and real supergroups are defined on the representation system of Spin +(1, 3). It is shown that a cyclic (modulo 2) structure of the complex supergroup is equivalent to a supersymmetric action, that is, it converts fermionic representations into bosonic representations and vice versa. The cyclic action of the real supergroup leads to a much more high-graded symmetry related with the modulo 8 periodicity of the real Clifford algebras. This symmetry acts on the system of real representations of Spin +(1, 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clifford W.K.: Applications of Grassmann’s extensive algebra. Amer. J. Math. 1, 350–358 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. R. Hamilton, Lectures on Quaternions. Hodges and Smith, Dublin, 1853.

  3. H. Grassmann, Die Ausdehnungslehre. Enslin, Berlin, 1862.

  4. W. K. Clifford, On the classification of geometric algebras. In: R. Tucker, ed., Mathematical Papers by William Kingdon Clifford, Macmillan, London, 1982, pp. 397–401.

  5. R. Lipschitz, Untersuchungen über die Summen von Quadraten. Max Cohen und Sohn, Bonn, 1886.

  6. E. Cartan, Nombres complexes. In J. Molk, ed. : Encyclopédie des sciences mathématiques, Tome I, Vol.1, Fasc 4, art. 15, (1908) pp. 329-468.

  7. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern. J. Reine Angew. Math. 176 (1937) 31–44.

    Google Scholar 

  8. C. Chevalley, The Algebraic Theory of Spinors. Columbia University Press, New York, 1954.

    MATH  Google Scholar 

  9. A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras, Spinor Structures. Kluwer Acad. Publ., Dordrecht, 1991.

  10. I. R. Porteous, Clifford Algebras and Classical Groups. Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  11. P. Lounesto, Clifford Algebras and Spinors. Cambridge University Press, Cambridge, 1997.

  12. S. Bochner, Formal Lie Groups. Ann. Math. 47 (1946) 192–212.

  13. F. A. Berezin, G. I. Kac, Lie groups with commuting and anticommuting parameters. Mat. Zbornik 82 (1970) 343–359.

    MathSciNet  Google Scholar 

  14. M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology 3, Suppl. 1, (1964) 3–38.

  15. Budinich P., Trautman A.: An introduction to the spinorial chessboard. J. Geom. Phys. 4, 363–390 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Budinich, A. Trautman, The Spinorial Chessboard. Springer, Berlin, 1988.

  17. C. T. C. Wall, Graded Brauer Groups. J. Reine Angew. Math. 213 (1964) 187–199.

    MathSciNet  MATH  Google Scholar 

  18. P. Lounesto, Scalar Products of Spinors and an Extension of Brauer-Wall Groups. Found. Phys. 11 (1981) 721–740.

    Article  MathSciNet  ADS  Google Scholar 

  19. D. M. Gitman, A. L. Shelepin, Field on the Poincaré group and quantum description of orientable objects. Eur. Phys. J. C. 61 (2009) 111–139; arXiv:0901.2537 [hep-th] (2009).

    Google Scholar 

  20. D. M. Gitman, A. L. Shelepin, Classification of quantum relativistic orientable objects. Phys. Scr. 83 (2011) 015103; arXiv:1001.5290 [hep-th] (2010).

  21. C. Chevalley, The construction and study of certain important algebras. Publications of Mathematical Society of Japan No 1, Herald Printing, Tokyo, 1955.

  22. M. Karoubi, K-Theory. An Introduction. Springer-Verlag, Berlin, 1979.

  23. P. K. Rashevskii, The Theory of Spinors. (In Russian) Uspekhi Mat. Nauk 10(1955), 3–110; English translation in Amer. Math. Soc. Transl. (Ser. 2) 6 (1957) 1.

  24. I. R. Porteous, Topological Geometry. van Nostrand, London, 1969.

  25. I. M. Gel’fand, R. A. Minlos, Z. Ya. Shapiro, Representations of the Rotation and Lorentz Groups and their Applications. Pergamon Press, Oxford, 1963.

  26. B. L. van der Waerden, Die Gruppentheoretische Methode in der Quantenmechanik. Springer, Berlin, 1932.

  27. I. M. Gel’fand, A. M. Yaglom, General relativistic–invariant equations and infinite–dimensional representations of the Lorentz group. Zh. Ehksp. Teor. Fiz. 18 (1948) 703–733.

    MathSciNet  Google Scholar 

  28. V. V. Varlamov, General Solutions of Relativistic Wave Equations. Int. J. Theor. Phys. 42 (2003) 583–633; arXiv:math-ph/0209036 (2002).

  29. V. V. Varlamov, Relativistic wavefunctions on the Poincare group. J. Phys. A: Math. Gen. 37 (2004) 5467–5476; arXiv:math-ph/0308038 (2003).

  30. V. V. Varlamov, Maxwell field on the Poincaré group. Int. J. Mod. Phys. A. 20 (2005) 4095–4112; arXiv:math-ph/0310051 (2003).

  31. M. Fierz, W. Pauli, On Relativistic Wave Equations of Particles of Arbitrary Spin in an Electromagnetic Field. Proc. Roy. Soc. (London) A. 173 (1939) 211–232.

    Article  MathSciNet  ADS  Google Scholar 

  32. V. V. Varlamov, General Solutions of Relativistic Wave Equations II: Arbitrary Spin Chains. Int. J. Theor. Phys. 46 (2007) 741–805; arXiv:math-ph/0503058 (2005).

  33. M. A. Naimark, Linear Representations of the Lorentz Group. Pergamon, London, 1964.

    Google Scholar 

  34. Yu.B. Rumer, A.I. Fet, Group Theory and Quantized Fields. Nauka, Moscow, 1977 [in Russian].

  35. L. de Broglie, Theorie Generale des Particules a Spin (Methode de Fusion). Gauthier-Villars, Paris, 1943.

  36. E.P. Wigner, Unitary Representations of the Inhomogeneous Lorentz Group Including Reflections. In: Group Theoretical Concepts and Methods in Elementary Particle Physics, Ed. F. G̈ursey, Gordon & Breach, New York, 1964.

  37. M. Gell-Mann, Y. Ne’eman, The Eightfold Way. Benjamin, New York, 1964.

  38. M. Berg, C. DeWitt-Morette, S. Gwo, E. Kramer, The Pin Groups in Physics: C, P, and T. Rev. Math. Phys. 13 (2001) 953–1034; arXiv:math-ph/0012006 (2000).

  39. C. A. Manogue, J. Schray, Octonionic representations of Clifford algebras and triality. Found. Phys. 26 (1996) 17–70; arXiv:hep-th/9407179 (1994).

  40. J. C. Baez, The Octonions. Bull. Am. Math. Soc. 39 (2002) 145–205; arXiv:math.RA/0105155 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Varlamov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varlamov, V.V. Cyclic Structures of Cliffordian Supergroups and Particle Representations of Spin+(1, 3). Adv. Appl. Clifford Algebras 24, 849–874 (2014). https://doi.org/10.1007/s00006-014-0446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-014-0446-4

Keywords

Navigation