Skip to main content
Log in

Using Periodicity Theorems for Computations in Higher Dimensional Clifford Algebras

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

We present different methods for symbolic computer algebra computations in higher dimensional (≥ 9) Clifford algebras using CLIFFORD and Bigebra packages for Maple®. This is achieved using graded tensor decompositions, periodicity theorems and matrix spinor representations over Clifford numbers. We show how to code the graded algebra isomorphisms and the main involutions, and we provide some benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abłamowicz. Clifford algebra computations with Maple. In: Baylis, W. E. (ed.) Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering. Birkhäuser, Boston (1996), pp. 463–502.

  2. R. Abłamowicz. Spinor representations of Clifford algebras: A symbolic approach. Computer Physics Communications Thematic Issue “Computer Algebra in Physics Research” Vol. 115, Numbers 2–3 (1998), 510–535.

  3. R. Abłamowicz: Computations with Clifford and Grassmann algebras. Adv. Applied Clifford Algebras 19, No. 3–4 (2009), 499–545.

  4. R. Abłamowicz, B. Fauser, CLIFFORD with BigebraA Maple Package for Computations with Clifford and Grassmann Algebras (2012), http://math.tntech.edu/rafal/. Cited June 10, 2012.

  5. R. Abłamowicz, B. Fauser: Clifford and Grassmann Hopf algebras via the Bigebra package for Maple. Computer Physics Communications 170 (2005), 115–130 mathph/0212032.

  6. R. Abłamowicz, B. Fauser: Mathematics of CLIFFORDA Maple Package for Clifford and Grassmann Algebras. Adv. in Applied Clifford Algebras 15, No. 2 (2005), 157–181 math-ph/0212031.

  7. R. Abłamowicz, B. Fauser: Maple worksheets created with CLIFFORD for verification of the results presented in this paper. (2012), http://math.tntech.edu/rafal/MapleWorksheets3.html. Cited June 10, 2012.

  8. R. Abłamowicz, B. Fauser: On the transposition anti-involution in real Clifford algebras III: the automorphism group of the transposition scalar product on spinor spaces. Linear and Multilinear Algebra Vol. 60 No. 6 (2012), 621-644.

  9. R. Abłamowicz, B. Fauser: On the transposition anti-involution in real Clifford algebras II: stabilizer groups of primitive idempotents. Linear and Multilinear Algebra Vol. 59 No. 12 (2011), 1359–1381.

  10. R. Abłamowicz, B. Fauser: On the transposition anti-involution in real Clifford algebras I: the transposition map. Linear and Multilinear Algebra Vol. 59 No. 12 (2011), 1331–1358.

  11. E. Bayro-Corrochano, Private communication (2012).

  12. P. Anglés, The structure of the Clifford algebra. Adv. Applied Clifford Algebras 19, No. 3–4 (2009), 585–610.

  13. M. F. Atiyah, R. Bott, A. Shapiro, Clifford modules. Topology Vol. 3, Suppl. 1 (1964), 3–38.

  14. P. Budinich, A. Trautman, The Spinorial Chessboard. Springer-Verlag, Berlin (1988).

  15. E. Cartan, (exposé d’après l’article allemand de E. Study): Nombres complexes. In Molk, J. (ed.), Encyclopédie des sciences mathématiques, Tome I, Vol. 1, Fasc. 4, art. 15 (1908). Reprinted in Cartan, E.: Œuvres complètes. Partie II, Gauthier-Villars, Paris (1953), pp. 107–246.

  16. R. Coquereaux, Clifford Algebras, spinors and fundamental interactions: Twenty Years Later. Adv. in Applied Clifford Algebras 19, No. 3–4 (2009), 673–686.

  17. A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras. Spinor Structures. Kluwer (2010).

  18. B. Fauser, R. Abłamowicz, On the decomposition of Clifford algebras of arbitrary bilinear form. In: Abłamowicz, R., Fauser, B. (eds.) Clifford Algebras and their Applications in Mathematical Physics, Birkhäuser, Boston (2000), pp. 341–366 math.QA/9911180.

  19. Helmstetter J., Micali A.: Quadratic Mappings and Clifford Algebras. Birkhäuser, Boston (2008)

    MATH  Google Scholar 

  20. T. Y. Lam, The Algebraic Theory of Quadratic Forms. The Benjamin/Cummings, Reading, MA (1973).

  21. Lounesto P.: Clifford Algebras and Spinors. 2nd ed. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  22. Mac Lane S.: Categories for the Working Mathematician. 2nd ed. Springer-Verlag, New York (1978)

    Book  Google Scholar 

  23. J. Maks, Modulo (1,1) periodicity of Clifford algebras and the generalized (anti-) Möbius transformations. Ph. D. Thesis, TU Delft (1989).

  24. Porteous I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Abłamowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abłamowicz, R., Fauser, B. Using Periodicity Theorems for Computations in Higher Dimensional Clifford Algebras. Adv. Appl. Clifford Algebras 24, 569–587 (2014). https://doi.org/10.1007/s00006-014-0440-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-014-0440-x

Keywords

Navigation