Adimora NJ, Jones DP, Kemp ML (2010) A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. Antioxid Redox Signal 13:731–743. https://doi.org/10.1089/ars.2009.2968
CAS
Article
PubMed
PubMed Central
Google Scholar
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE et al (2021) Mitochondrial redox signaling and oxidative stress in kidney diseases. Biomolecules 11:1144. https://doi.org/10.3390/biom11081144
CAS
Article
PubMed
PubMed Central
Google Scholar
Basu A, Banerjee H, Rojas H et al (2011) Differential expression of peroxiredoxins in prostate cancer: consistent upregulation of PRDX3 and PRDX4. Prostate 71:755–765. https://doi.org/10.1002/pros.21292
CAS
Article
PubMed
Google Scholar
Beck LH Jr, Salant DJ (2010) Membranous nephropathy: recent travels and new roads ahead. Kidney Int 77:765–770. https://doi.org/10.1038/ki.2010.34
CAS
Article
PubMed
Google Scholar
Brück K, Stel VS, Gambaro G et al (2016) CKD prevalence varies across the European general population. J Am Soc Nephrol 27:2135–2147. https://doi.org/10.1681/asn.2015050542
Article
PubMed
Google Scholar
Cachofeiro V, Goicochea M, de Vinuesa SC et al (2008) Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl 111:S4-9. https://doi.org/10.1038/ki.2008.516
CAS
Article
Google Scholar
Daenen K, Andries A, Mekahli D et al (2019) Oxidative stress in chronic kidney disease. Pediatr Nephrol 34:975–991. https://doi.org/10.1007/s00467-018-4005-4
Article
PubMed
Google Scholar
Daha MR, van Kooten C (2016) Role of complement in IgA nephropathy. J Nephrol 29:1–4. https://doi.org/10.1007/s40620-015-0245-6
CAS
Article
PubMed
Google Scholar
Descamps-Latscha B, Drüeke T, Witko-Sarsat V (2001) Dialysis-induced oxidative stress: biological aspects, clinical consequences, and therapy. Semin Dial 14:193–199. https://doi.org/10.1046/j.1525-139x.2001.00052.x
CAS
Article
PubMed
Google Scholar
Floege J, Amann K (2016) Primary glomerulonephritides. Lancet 387:2036–2048. https://doi.org/10.1016/s0140-6736(16)00272-5
Article
PubMed
Google Scholar
Foreman KJ, Marquez N, Dolgert A et al (2018) Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392:2052–2090. https://doi.org/10.1016/s0140-6736(18)31694-5
Article
PubMed
PubMed Central
Google Scholar
Gao J, Meyer K, Borucki K et al (2018) Multiplex immuno-MALDI-TOF MS for targeted quantification of protein biomarkers and their proteoforms related to inflammation and renal dysfunction. Anal Chem 90:3366–3373. https://doi.org/10.1021/acs.analchem.7b04975
CAS
Article
PubMed
Google Scholar
Goemaere J, Knoops B (2012) Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol 520:258–280. https://doi.org/10.1002/cne.22689
CAS
Article
PubMed
Google Scholar
Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L et al (2020) Coenzyme Q(10) supplementation for the reduction of oxidative stress: clinical implications in the treatment of chronic diseases. Int J Mol Sci 21:7870. https://doi.org/10.3390/ijms21217870
CAS
Article
PubMed Central
Google Scholar
Gwozdzinski K, Pieniazek A, Gwozdzinski L (2021) Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid Med Cell Longev 2021:6639199. https://doi.org/10.1155/2021/6639199
CAS
Article
PubMed
PubMed Central
Google Scholar
Han YH, Kim SU, Kwon TH et al (2012) Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun 426:427–432. https://doi.org/10.1016/j.bbrc.2012.08.113
CAS
Article
PubMed
Google Scholar
He Y, Li S, Tang D et al (2019) Circulating peroxiredoxin-1 is a novel damage-associated molecular pattern and aggravates acute liver injury via promoting inflammation. Free Radic Biol Med 137:24–36. https://doi.org/10.1016/j.freeradbiomed.2019.04.012
CAS
Article
PubMed
Google Scholar
Hill NR, Fatoba ST, Oke JL et al (2016) Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS ONE 11:e0158765. https://doi.org/10.1371/journal.pone.0158765
CAS
Article
PubMed
PubMed Central
Google Scholar
Hwang I, Uddin MJ, Lee G et al (2019) Peroxiredoxin 3 deficiency accelerates chronic kidney injury in mice through interactions between macrophages and tubular epithelial cells. Free Radic Biol Med 131:162–172. https://doi.org/10.1016/j.freeradbiomed.2018.12.002
CAS
Article
PubMed
Google Scholar
Irazabal MV, Torres VE (2020) Reactive oxygen species and redox signaling in chronic kidney disease. Cells 9:1342. https://doi.org/10.3390/cells9061342
CAS
Article
PubMed Central
Google Scholar
Jeong J, Kim Y, Kyung Seong J et al (2012) Comprehensive identification of novel post-translational modifications in cellular peroxiredoxin 6. Proteomics 12:1452–1462. https://doi.org/10.1002/pmic.201100558
CAS
Article
PubMed
Google Scholar
Johnson RM, Goyette G Jr, Ravindranath Y et al (2005) Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic Biol Med 39:1407–1417. https://doi.org/10.1016/j.freeradbiomed.2005.07.002
CAS
Article
PubMed
Google Scholar
Kaartinen K, Safa A, Kotha S et al (2019) Complement dysregulation in glomerulonephritis. Semin Immunol 45:101331. https://doi.org/10.1016/j.smim.2019.101331
CAS
Article
PubMed
Google Scholar
Kim MH, Park SJ, Kim JH et al (2018) Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. Free Radic Biol Med 123:27–38. https://doi.org/10.1016/j.freeradbiomed.2018.05.061
CAS
Article
PubMed
Google Scholar
Kim MH, Seong JB, Huh JW et al (2020) Peroxiredoxin 5 ameliorates obesity-induced non-alcoholic fatty liver disease through the regulation of oxidative stress and AMP-activated protein kinase signaling. Redox Biol 28:101315. https://doi.org/10.1016/j.redox.2019.101315
CAS
Article
PubMed
Google Scholar
Krata N, Zagożdżon R, Foroncewicz B et al (2018) Oxidative stress in kidney diseases: the cause or the consequence? Arch Immunol Ther Exp 66:211–220. https://doi.org/10.1007/s00005-017-0496-0
CAS
Article
Google Scholar
Lee E, Lee HS (2018) Peroxidase expression is decreased by palmitate in cultured podocytes but increased in podocytes of advanced diabetic nephropathy. J Cell Physiol 233:9060–9069. https://doi.org/10.1002/jcp.26875
CAS
Article
PubMed
PubMed Central
Google Scholar
Liakopoulos V, Roumeliotis S, Bozikasb A et al (2019) Antioxidant supplementation in renal replacement therapy patients: is there evidence? Oxid Med Cell Longev 2019:9109473. https://doi.org/10.1155/2019/9109473
CAS
Article
PubMed
PubMed Central
Google Scholar
McGrogan A, Franssen CF, de Vries CS (2011) The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant 26:414–430. https://doi.org/10.1093/ndt/gfq665
Article
PubMed
Google Scholar
Moszczuk B, Kiryluk K, Pączek L et al (2021) Membranous nephropathy: from research bench to personalized care. J Clin Med 10:1205. https://doi.org/10.3390/jcm10061205
CAS
Article
PubMed
PubMed Central
Google Scholar
Mucha K, Bakun M, Jaźwiec R et al (2014) Complement components, proteolysis-related, and cell communication-related proteins detected in urine proteomics are associated with IgA nephropathy. Pol Arch Med Wewn 124:380–386. https://doi.org/10.20452/pamw.2345
Article
PubMed
Google Scholar
Mucha K, Foroncewicz B, Pączek L (2016) How to diagnose and follow patients with glomerulonephritis without kidney biopsy? Pol Arch Med Wewn 126:471–473. https://doi.org/10.20452/pamw.3510
Article
PubMed
Google Scholar
Na W, Yi K, Song YS et al (2017) Dissecting the relationships of IgG subclasses and complements in membranous lupus nephritis and idiopathic membranous nephropathy. PLoS ONE 12:e0174501. https://doi.org/10.1371/journal.pone.0174501
CAS
Article
PubMed
PubMed Central
Google Scholar
Nagababu E, Gulyani S, Earley CJ et al (2008) Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res 42:824–829. https://doi.org/10.1080/10715760802459879
CAS
Article
PubMed
PubMed Central
Google Scholar
O’Leary PC, Terrile M, Bajor M et al (2014) Peroxiredoxin-1 protects estrogen receptor α from oxidative stress-induced suppression and is a protein biomarker of favorable prognosis in breast cancer. Breast Cancer Res 16:R79. https://doi.org/10.1186/bcr3691
CAS
Article
PubMed
PubMed Central
Google Scholar
Pac M, Krata N, Moszczuk B, Wyczałkowska-Tomasik A, Kaleta B, Foroncewicz B, Rudnicki W, Pączek L, Mucha K (2021) NR3C1 Glucocorticoid Receptor Gene Polymorphisms Are Associated with Membranous and IgA Nephropathies. Cells 10(11):3186. https://doi.org/10.3390/cells10113186
Article
PubMed
PubMed Central
Google Scholar
Park MH, Jo M, Kim YR et al (2016) Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 163:1–23. https://doi.org/10.1016/j.pharmthera.2016.03.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Patel M, Clarke AM, Bruce IN et al (2006) The prevalence and incidence of biopsy-proven lupus nephritis in the UK: Evidence of an ethnic gradient. Arthritis Rheum 54:2963–2969. https://doi.org/10.1002/art.22079
Article
PubMed
Google Scholar
Perkins A, Nelson KJ, Parsonage D et al (2015) Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40:435–445. https://doi.org/10.1016/j.tibs.2015.05.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Pippias M, Kramer A, Noordzij M et al (2017) The European renal association—European dialysis and transplant association registry annual report 2014: a summary. Clin Kidney J 10:154–169. https://doi.org/10.1093/ckj/sfw135
Article
PubMed
PubMed Central
Google Scholar
Placzek WJ, Yanagawa H, Makita Y et al (2018) Serum galactose-deficient-IgA1 and IgG autoantibodies correlate in patients with IgA nephropathy. PLoS ONE 13:e0190967. https://doi.org/10.1371/journal.pone.0190967
CAS
Article
PubMed
PubMed Central
Google Scholar
Selvaskandan H, Shi S, Twaij S et al (2020) Monitoring immune responses in IgA nephropathy: biomarkers to guide management. Front Immunol 11:572754. https://doi.org/10.3389/fimmu.2020.572754
CAS
Article
PubMed
PubMed Central
Google Scholar
Sethi S, Madden BJ, Debiec H et al (2019) Exostosin 1/exostosin 2-associated membranous nephropathy. J Am Soc Nephrol 30:1123–1136. https://doi.org/10.1681/asn.2018080852
CAS
Article
PubMed
PubMed Central
Google Scholar
Sethi S, Debiec H, Madden B et al (2020) Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 97:163–174. https://doi.org/10.1016/j.kint.2019.09.014
CAS
Article
PubMed
Google Scholar
Sharapov MG, Goncharov RG, Filkov GI et al (2020) Comparative study of protective action of exogenous 2-Cys peroxiredoxins (Prx1 and Prx2) under renal ischemia-reperfusion injury. Antioxidants 9:680. https://doi.org/10.3390/antiox9080680
CAS
Article
PubMed Central
Google Scholar
Sharma M, Vignesh P, Tiewsoh K et al (2020) Revisiting the complement system in systemic lupus erythematosus. Expert Rev Clin Immunol 16:397–408. https://doi.org/10.1080/1744666x.2020.1745063
CAS
Article
PubMed
Google Scholar
Vassalotti JA, Fox CH, Becker BN (2010) Risk factors and screening for chronic kidney disease. Adv Chronic Kidney Dis 17:237–245. https://doi.org/10.1053/j.ackd.2010.03.003
Article
PubMed
Google Scholar
Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286. https://doi.org/10.1038/nchembio.85
CAS
Article
PubMed
Google Scholar
Wu CL, Su TC, Chang CC et al (2017) Tubular peroxiredoxin 3 as a predictor of renal recovery from acute tubular necrosis in patients with chronic kidney disease. Sci Rep 7:43589. https://doi.org/10.1038/srep43589
Article
PubMed
PubMed Central
Google Scholar
Xie J, Liu L, Mladkova N, Li Y, Ren H, Wang W, Cui Z, Lin L, Hu X, Yu X, Xu J, Liu G, Caliskan Y, Sidore C, Balderes O, Rosen RJ, Bodria M, Zanoni F, Zhang JY, Krithivasan P, Mehl K, Marasa M, Khan A, Ozay F, Canetta PA, Bomback AS, Appel GB, Sanna-Cherchi S, Sampson MG, Mariani LH, Perkowska-Ptasinska A, Durlik M, Mucha K, Moszczuk B, Foroncewicz B, Pączek L, Habura I, Ars E, Ballarin J, Mani LY, Vogt B, Ozturk S, Yildiz A, Seyahi N, Arikan H, Koc M, Basturk T, Karahan G, Akgul SU, Sever MS, Zhang D, Santoro D, Bonomini M, Londrino F, Gesualdo L, Reiterova J, Tesar V, Izzi C, Savoldi S, Spotti D, Marcantoni C, Messa P, Galliani M, Roccatello D, Granata S, Zaza G, Lugani F, Ghiggeri G, Pisani I, Allegri L, Sprangers B, Park JH, Cho B, Kim YS, Kim DK, Suzuki H, Amoroso A, Cattran DC, Fervenza FC, Pani A, Hamilton P, Harris S, Gupta S, Cheshire C, Dufek S, Issler N, Pepper RJ, Connolly J, Powis S, Bockenhauer D, Stanescu HC, Ashman N, Loos RJF, Kenny EE, Wuttke M, Eckardt KU, Köttgen A, Hofstra JM, Coenen MJH, Kiemeney LA, Akilesh S, Kretzler M, Beck LH, Stengel B, Debiec H, Ronco P, Wetzels JFM, Zoledziewska M, Cucca F, Ionita-Laza I, Lee H, Hoxha E, Stahl RAK, Brenchley P, Scolari F, Zhao MH, Gharavi AG, Kleta R, Chen N, Kiryluk K (2020) The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nat Commun. https://doi.org/10.1038/s41467-020-15383-w
Article
PubMed
PubMed Central
Google Scholar
Yanagawa H, Suzuki H, Suzuki Y et al (2014) A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE 9:e98081. https://doi.org/10.1371/journal.pone.0098081
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang HY, Lee TH (2015) Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep 48:200–208. https://doi.org/10.5483/bmbrep.2015.48.4.274
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang YZ, Zhao Y, Yang L et al (2018) Characterization of 2-Cys peroxiredoxin 3 and 4 in common carp and the immune response against bacterial infection. Comp Biochem Physiol B Biochem Mol Biol 217:60–69. https://doi.org/10.1016/j.cbpb.2017.12.012
CAS
Article
PubMed
Google Scholar
Zacchia M, Marchese E, Trani EM et al (2020) Proteomics and metabolomics studies exploring the pathophysiology of renal dysfunction in autosomal dominant polycystic kidney disease and other ciliopathies. Nephrol Dial Transplant 35:1853–1861. https://doi.org/10.1093/ndt/gfz121
CAS
Article
PubMed
Google Scholar
Zhang MF, Huang J, Zhang YM et al (2019) Complement activation products in the circulation and urine of primary membranous nephropathy. BMC Nephrol 20:313. https://doi.org/10.1186/s12882-019-1509-5
CAS
Article
PubMed
PubMed Central
Google Scholar