Skip to main content

Advertisement

Log in

Immune Regulation by Sphingosine 1-Phosphate and Its Receptors

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

It is well established that the lysophospholipid and signalling molecule sphingosine 1-phosphate (S1P) has many important functions in immune surveillance. S1P is produced from sphingosine by two distinct sphingosine kinases, SphK1 and SphK2, and acts as an intracellular messenger and as an extracellular ligand of five G protein-coupled cell surface receptors designated S1P1–S1P5. S1P not only regulates peripheral lymphocyte circulation, but also influences their differentiation, activation, infiltration, and local positioning. The therapeutic value of modulating S1P metabolism and S1P receptor function is currently tested in clinical trials and holds great promise for treatment of different autoimmune diseases. Despite its obvious contribution to immune regulation, the analysis of S1P is still challenging. A major obstacle is the difficulty to analyze S1P locally in tissues and within cells due to its high metabolic turnover and the limited resolution of current analytical techniques like liquid chromatography and mass spectrometry. This review focuses on recent advancements to our understanding how different sources of S1P contribute to immune function, and how changes in production, secretion, and degradation of S1P can influence immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

S1P:

Sphingosine 1-phosphate

SGPL1:

S1P-lyase

SphK:

Sphingosine kinase

RBC:

Red blood cells

SA:

Serum albumin

HDL:

High-density lipoproteins

LPP:

Lipid phosphate phosphatase

PSA:

Passive systemic anaphylaxis

MZB:

Marginal zone B

References

  • Allende ML, Sasaki T, Kawai H et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279:52487–52492

    Article  PubMed  CAS  Google Scholar 

  • Allende ML, Tuymetova G, Lee BG et al (2010) S1P1 receptor directs the release of immature B cells from bone marrow into blood. J Exp Med 207:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Allende ML, Bektas M, Lee BG et al (2011) Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 286:7348–7358

    Article  PubMed  CAS  Google Scholar 

  • Alvarez SE, Harikumar KB, Hait NC et al (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465:1084–1088

    Article  PubMed  CAS  Google Scholar 

  • An S, Bleu T, Huang W et al (1997) Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett 417:279–282

    Article  PubMed  CAS  Google Scholar 

  • Andréani P, Gräler MH (2006) Comparative quantification of sphingolipids and analogs in biological samples by high-performance liquid chromatography after chloroform extraction. Anal Biochem 358:239–246

    Article  PubMed  Google Scholar 

  • Bagdanoff JT, Donoviel MS, Nouraldeen A et al (2010) Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R, 2S, 3R)-1, 2, 3, 4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R, 2S, 3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1, 2, 3, 4-tetraol (LX2932). J Med Chem 53:8650–8662

    Article  PubMed  CAS  Google Scholar 

  • Bankovich AJ, Shiow LR, Cyster JG (2010) CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J Biol Chem 285:22328–22337

    Article  PubMed  CAS  Google Scholar 

  • Bektas M, Allende ML, Lee BG et al (2010) Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J Biol Chem 285:10880–10889

    Article  PubMed  CAS  Google Scholar 

  • Billich A, Bornancin F, Devay P et al (2003) Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases. J Biol Chem 278:47408–47415

    Article  PubMed  CAS  Google Scholar 

  • Bode C, Sensken SC, Peest U et al (2010) Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J Cell Biochem 109:1232–1243

    PubMed  CAS  Google Scholar 

  • Breart B, Ramos-Perez WD, Mendoza A et al (2011) Lipid phosphate phosphatase 3 enables efficient thymic egress. J Exp Med 208:1267–1278

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V, Davis MD, Heise CE et al (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann V, Billich A, Baumruker T et al (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897

    Article  PubMed  CAS  Google Scholar 

  • Camerer E, Regard JB, Cornelissen I et al (2009) Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J Clin Invest 119:1871–1879

    PubMed  CAS  Google Scholar 

  • Choi JW, Gardell SE, Herr DR et al (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA 108:751–756

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen C, Obinata H, Kumaraswamy SB et al (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA 108:9613–9618

    Article  PubMed  CAS  Google Scholar 

  • Cinamon G, Matloubian M, Lesneski MJ et al (2004) Sphingosine 1-phosphate receptor 1 promotes B cell localization in the splenic marginal zone. Nat Immunol 5:713–720

    Article  PubMed  CAS  Google Scholar 

  • Cinamon G, Zachariah MA, Lam OM et al (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9:54–62

    Article  PubMed  CAS  Google Scholar 

  • Cuvillier O, Pirianov G, Kleuser B et al (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800–803

    Article  PubMed  CAS  Google Scholar 

  • Förster R, Mattis AE, Kremmer E et al (1996) A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87:1037–1047

    Article  PubMed  Google Scholar 

  • Förster R, Schubel A, Breitfeld D et al (1999) CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33

    Article  PubMed  Google Scholar 

  • Golfier S, Kondo S, Schulze T et al (2010) Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4. FASEB J 24:4701–4710

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Cabrera PJ, Hla T, Rosen H (2007) Mapping pathways downstream of sphingosine 1-phosphate subtype 1 by differential chemical perturbation and proteomics. J Biol Chem 282:7254–7264

    Article  PubMed  CAS  Google Scholar 

  • Gossens K, Naus S, Corbel SY et al (2009) Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J Exp Med 206:761–778

    Article  PubMed  CAS  Google Scholar 

  • Gräler MH (2010) Targeting sphingosine 1-phosphate (S1P) levels and S1P receptor functions for therapeutic immune interventions. Cell Physiol Biochem 26:79–86

    Article  PubMed  Google Scholar 

  • Gräler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18:551–553

    PubMed  Google Scholar 

  • Gräler MH, Huang MC, Watson S et al (2005) Immunological effects of transgenic constitutive expression of the type 1 sphingosine 1-phosphate receptor by mouse lymphocytes. J Immunol 174:1997–2003

    PubMed  Google Scholar 

  • Hait NC, Allegood J, Maceyka M et al (2009) Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Hänel P, Andréani P, Gräler MH (2007) Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J 21:1202–1209

    Article  PubMed  Google Scholar 

  • Huang MC, Watson SR, Liao JJ et al (2007) Th17 augmentation in OTII TCR plus T cell-selective type 1 sphingosine 1-phosphate receptor double transgenic mice. J Immunol 178:6806–6813

    PubMed  CAS  Google Scholar 

  • Igarashi N, Okada T, Hayashi S et al (2003) Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem 278:46832–46839

    Article  PubMed  CAS  Google Scholar 

  • Im DS, Heise CE, Ancellin N et al (2000) Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem 275:14281–14286

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Egen JG, Klauschen F et al (2009) Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458:524–528

    Article  PubMed  CAS  Google Scholar 

  • Ishii M, Kikuta J, Shimazu Y et al (2010) Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med 207:2793–2798

    Article  PubMed  CAS  Google Scholar 

  • Jarman KE, Moretti PA, Zebol JR et al (2010) Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 285:483–492

    Article  PubMed  CAS  Google Scholar 

  • Jenne CN, Enders A, Rivera R et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  PubMed  CAS  Google Scholar 

  • Johnson KR, Becker KP, Facchinetti MM et al (2002) PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem 277:35257–35262

    Article  PubMed  CAS  Google Scholar 

  • Kertesz V, Van Berkel GJ (2010) Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J Mass Spectrom 45:252–260

    Article  PubMed  CAS  Google Scholar 

  • Keul P, Lucke S, von Wnuck Lipinski K et al (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res 108:314–323

    Article  PubMed  CAS  Google Scholar 

  • Kharel Y, Lee S, Snyder AH et al (2005) Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J Biol Chem 280:36865–36872

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Kobayashi N, Yamaguchi A et al (2009) Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem 284:21192–21200

    Article  PubMed  CAS  Google Scholar 

  • Kohama T, Olivera A, Edsall L et al (1998) Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem 273:23722–23728

    Article  PubMed  CAS  Google Scholar 

  • König K, Diehl L, Rommerscheidt-Fuss U et al (2010) Four-and-a-half LIM domain protein 2 is a novel regulator of sphingosine 1-phosphate receptor 1 in CCL19-induced dendritic cell migration. J Immunol 185:1466–1475

    Article  PubMed  Google Scholar 

  • Lee MJ, Van Brocklyn JR, Thangada S et al (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279:1552–1555

    Article  PubMed  CAS  Google Scholar 

  • Lee YM, Venkataraman K, Hwang SI et al (2007) A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins Other Lipid Mediat 84:154–162

    Article  PubMed  CAS  Google Scholar 

  • Liao JJ, Huang MC, Goetzl EJ (2007) Cutting edge: alternative signaling of Th17 cell development by sphingosine 1-phosphate. J Immunol 178:5425–5428

    PubMed  CAS  Google Scholar 

  • Liu H, Sugiura M, Nava VE et al (2000) Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J Biol Chem 275:19513–19520

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Burns S, Huang G et al (2009) The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol 10:769–777

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Yang K, Burns S et al (2010) The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol 11:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Lo CG, Xu Y, Proia RL et al (2005) Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med 201:291–301

    Article  PubMed  CAS  Google Scholar 

  • Mandala S, Hajdu R, Bergstrom J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349

    Article  PubMed  CAS  Google Scholar 

  • Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  PubMed  CAS  Google Scholar 

  • Mizugishi K, Yamashita T, Olivera A et al (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25:11113–11121

    Article  PubMed  CAS  Google Scholar 

  • Niessen F, Schaffner F, Furlan-Freguia C et al (2008) Dendritic cell PAR1–S1P3 signalling couples coagulation and inflammation. Nature 452:654–658

    Article  PubMed  CAS  Google Scholar 

  • O’Brien N, Jones ST, Williams DG et al (2009) Production and characterization of monoclonal anti-sphingosine-1-phosphate antibodies. J Lipid Res 50:2245–2257

    Article  PubMed  Google Scholar 

  • Ogawa C, Kihara A, Gokoh M et al (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. J Biol Chem 278:1268–1272

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Rivera J (2011) An emerging role for the lipid mediator sphingosine-1-phosphate in mast cell effector function and allergic disease. Adv Exp Med Biol 716:123–142

    Article  PubMed  Google Scholar 

  • Olivera A, Mizugishi K, Tikhonova A et al (2007) The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26:287–297

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Eisner C, Kitamura Y et al (2010) Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J Clin Invest 120:1429–1440

    Article  PubMed  CAS  Google Scholar 

  • Oo ML, Thangada S, Wu MT et al (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282:9082–9089

    Article  PubMed  CAS  Google Scholar 

  • Oskeritzian CA, Price MM, Hait NC et al (2010) Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. J Exp Med 207:465–474

    Article  PubMed  CAS  Google Scholar 

  • Pappu R, Schwab SR, Cornelissen I et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298

    Article  PubMed  CAS  Google Scholar 

  • Paugh SW, Payne SG, Barbour SE et al (2003) The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2. FEBS Lett 554:189–193

    Article  PubMed  CAS  Google Scholar 

  • Pereira JP, Xu Y, Cyster JG (2010) A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS One 5:e9277

    Article  PubMed  Google Scholar 

  • Pham TH, Okada T, Matloubian M et al (2008) S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28:122–133

    Article  PubMed  CAS  Google Scholar 

  • Pham TH, Baluk P, Xu Y et al (2010) Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med 207:17–27

    Article  PubMed  CAS  Google Scholar 

  • Pinschewer DD, Ochsenbein AF, Odermatt B et al (2000) FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion, and memory. J Immunol 164:5761–5770

    PubMed  CAS  Google Scholar 

  • Prakash H, Luth A, Grinkina N et al (2010) Sphingosine kinase-1 (SphK-1) regulates Mycobacterium smegmatis infection in macrophages. PLoS One 5:e10657

    Article  PubMed  Google Scholar 

  • Puneet P, Yap CT, Wong L et al (2010) SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science 328:1290–1294

    Article  PubMed  CAS  Google Scholar 

  • Pyne NJ, Pyne S (2010) Sphingosine 1-phosphate and cancer. Nat Rev Cancer 10:489–503

    Article  PubMed  CAS  Google Scholar 

  • Rathinasamy A, Czeloth N, Pabst O et al (2010) The origin and maturity of dendritic cells determine the pattern of sphingosine 1-phosphate receptors expressed and required for efficient migration. J Immunol 185:4072–4081

    Article  PubMed  CAS  Google Scholar 

  • Rivera J, Proia RL, Olivera A (2008) The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol 8:753–763

    Article  PubMed  CAS  Google Scholar 

  • Roberts R, Sciorra VA, Morris AJ (1998) Human type 2 phosphatidic acid phosphohydrolases. Substrate specificity of the type 2a, 2b, and 2c enzymes and cell surface activity of the 2a isoform. J Biol Chem 273:22059–22067

    Article  PubMed  CAS  Google Scholar 

  • Saba JD, Nara F, Bielawska A et al (1997) The BST1 gene of Saccharomyces cerevisiae is the sphingosine-1-phosphate lyase. J Biol Chem 272:26087–26090

    Article  PubMed  CAS  Google Scholar 

  • Sabbadini RA (2006) Targeting sphingosine-1-phosphate for cancer therapy. Br J Cancer 95:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Sabbadini RA (2011) Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration. Br J Pharmacol 162:1225–1238

    Article  PubMed  CAS  Google Scholar 

  • Schwab SR, Pereira JP, Matloubian M et al (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739

    Article  PubMed  CAS  Google Scholar 

  • Sensken SC, Bode C, Gräler MH (2009) Accumulation of fingolimod (FTY720) in lymphoid tissues contributes to prolonged efficacy. J Pharmacol Exp Ther 328:963–969

    Article  PubMed  CAS  Google Scholar 

  • Sensken SC, Bode C, Nagarajan M et al (2010) Redistribution of sphingosine 1-phosphate by sphingosine kinase 2 contributes to lymphopenia. J Immunol 184:4133–4142

    Article  PubMed  CAS  Google Scholar 

  • Sensken SC, Nagarajan M, Bode C et al (2011) Local inactivation of sphingosine 1-phosphate in lymph nodes induces lymphopenia. J Immunol 186:3432–3440

    Article  PubMed  CAS  Google Scholar 

  • Shiow LR, Rosen DB, Brdickova N et al (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544

    Article  PubMed  CAS  Google Scholar 

  • Skoura A, Michaud J, Im DS et al (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 31:81–85

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Milstien S (2011) The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol 11:403–415

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan S, Bolick DT, Lukashev D et al (2008) Sphingosine-1-phosphate reduces CD4+ T-cell activation in type 1 diabetes through regulation of hypoxia-inducible factor short isoform I.1 and CD69. Diabetes 57:484–493

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Enosawa S, Kakefuda T et al (1996) A novel immunosuppressant, FTY720, with a unique mechanism of action, induces long-term graft acceptance in rat and dog allotransplantation. Transplantation 61:200–205

    Article  PubMed  CAS  Google Scholar 

  • Thangada S, Khanna KM, Blaho VA et al (2010) Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. J Exp Med 207:1475–1483

    Article  PubMed  CAS  Google Scholar 

  • Van Brocklyn JR, Gräler MH, Bernhardt G et al (2000) Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95:2624–2629

    PubMed  Google Scholar 

  • Venkataraman K, Lee YM, Michaud J et al (2008) Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res 102:669–676

    Article  PubMed  CAS  Google Scholar 

  • Vogel P, Donoviel MS, Read R et al (2009) Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS One 4:e4112

    Article  PubMed  Google Scholar 

  • Walzer T, Chiossone L, Chaix J et al (2007) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Okamoto Y, Inoki I et al (2010) Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest 120:3979–3995

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Krueger A, Münk A et al (2009) Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. J Immunol 183:4292–4301

    Article  PubMed  CAS  Google Scholar 

  • Wei SH, Rosen H, Matheu MP et al (2005) Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat Immunol 6:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Weigert A, Weis N, Brüne B (2009) Regulation of macrophage function by sphingosine-1-phosphate. Immunobiology 214:748–760

    Article  PubMed  CAS  Google Scholar 

  • Wojciak JM, Zhu N, Schuerenberg KT et al (2009) The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen. Proc Natl Acad Sci USA 106:17717–17722

    Article  PubMed  CAS  Google Scholar 

  • Zachariah MA, Cyster JG (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Zemann B, Kinzel B, Muller M et al (2006) Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107:1454–1458

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by the priority program 1267 “sphingolipids—signals and disease”, grant GR 1943/2-2 (to MHG.), and grant GR 1943/3-1 (to MHG.) from the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus H. Gräler.

About this article

Cite this article

Bode, C., Gräler, M.H. Immune Regulation by Sphingosine 1-Phosphate and Its Receptors. Arch. Immunol. Ther. Exp. 60, 3–12 (2012). https://doi.org/10.1007/s00005-011-0159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-011-0159-5

Keywords

Navigation